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Why Pt is such a good catalyst ?

Model catalysis : CO oxidation

The roles of surface is critical.

Not too strong !
Not too weak !

Correlation between
surface chemical properties
and
surface electronic structure

' Carbon atom
O

Carbon monoxude (CO) and
to catalyst surface.

Platinum catalyst

-0 0~ Oxygen molecule splits into
two atoms, which move
across the surface.

b\ f Oxygen reacts with carbon
monoxide (CO) to form

carbon dioxide (CO:z).
Carbon dioxide has weak
bond with catalyst surface,
so is released.

Catalyst surface is now free

repeated.
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Molecular Orbital Theory

A (empty) antibonding molecular orbital
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Carbon monoxide (CO) and
oxygen (O2) molecules bind
to catalyst surface.

Oxygen molecule splits into
two atoms, which move
across the surface.

Oxygen reacts with carbon
monoxide (CO) to form
carbon dioxide (COz).
Carbon dioxide has weak
bond with catalyst surface,
SO is released.

Catalyst surface is now free
for the process to be
repeated.
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Molecular Orbital View of Chemisorbed Carbon Monoxide

by George Blyholder

Department of Chemistry, Universily of Arkansas, Fayetteville, Arkansas
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CO to Rh metal metal Rh to CO
o donation n* backdonation

Scheme 1. The resembled Blyholder model of CO molecule adsorbed on the 4Rh/
CeO,(Rh-cluster) surface.

Chemical Physics 348 (2008) 161-168

(Recetved February 26, 1964)

Frontier Molecular Orbitals
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FIG. 10. Crystal orbital overlap population for CO, on top, in a
c(2Xx2)CO-Ni(100) model. Representative orbital combina-
tions are drawn.
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FIG. 6. “Interaction diagrams” for So and 27™* of ¢ (2 2)CO-Ni(100). The extreme left and right panels in each case show the con-
tributions of the appropriate orbitals (z* for 5o, xz,yz for 2m*) of a surface metal atom (left), and of the corresponding isolated CO
monolayer MO. The middle two panels then show the contributions of the same fragment MQO’s to the DOS of the composite chem-
isorption system.
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Toward A Coherent
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d-Band Model : Explaining the trend of surface reactivity

n—annibonding

g—antibonding

n-bonding

= o-honding

Projected DMOS (arb. units)

J. K. Norskov et al. Catalysis Letters 46 (1997) 31-35



A Molecular Perspective on the d-Band Model: Synergy Between
Experiment and Theory

Lars Gunnar Moody Pettersson * Anders Nilsson

Top Catal (2014) 57:2-13
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much to tell them about bonding in the solid state. I would What
disagree. Chemists have built up a great deal of under- CoNnce
away
try, li

spaced polymer, then s
ity, called a Peierls di

UV U1 LIGLIDIGRIVILD 111 LT W2 ¥Y3ldai, Vi, ailCLUali¥Yeiy, ad 1idily
as there are microscopic unit cells in the macroscopic crys-
‘al. So let us say Avogadro’s number (N,), give or take a
‘ew. There is an energy level for each value of k (actually a
degenerate pair of levels for each pair of positive and ne-
zative k values). There is an easily proved theorem that

AP S BN /s T ™ = & = . .- -~ L L BN L4 - -

ate symmetry-adapted linear combinations y (remem-
" translation is just as good a symmetry operation as any
ier one we know) are given in 6. Here a is the lattice
icing (the unit cell being in one dimension) and k is an
lex which labels which irreducible representation of the
nslation group w transforms as. We will see in a mo-

block instead of N4 lines), the physicist will alternatively
draw as an E(k) vs. k diagram at right in 8. Recall that k 1
quantized, and there is a finite but large number of level:
in the diagram at right. The reason it looks continuous I
that this is a fine “dot matrix’’ printer—there are N, point:
jammed in there, and so it’s no wonder we see a line.

Graphs of E(k) vs. k are called band structures. You car
be sure that they can be much more complicated than thi;
simple one, but no matter how complicated, they can b
understood.

Band Width

One very important feature of a band is its dispersion, o
band width, the difference in energy between the highes
and lowest levels in the band. What determines the widtl
of bands? The same thing that determines the splitting o
levels in a ‘“‘dimer,” ethylene or H,, namely, the overlaj




Physicist's point of view on matter

(Real) r-space (Momentum) k-space
© © 0 0 Q |, *\ / K,
S \ \

[
»

O lons (nucleus + core electrons) Occupied states Eermi surface

Delocalized valence electrons

» Electrons (waves) in a periodic potential

« (Periodic) electronic band structure formed We want to know this

« Many physical properties determined by the(electronic structure



Electronic structure

Band structure
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Real Life

Band structure: Transition metal
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X-ray Photoelectron Spectroscopy (XPS)

Photoelectric Effect : Einstein (1905)

Energy Analyzer

hv L"lear \quin _ I
e 89 . ?\ﬂ : E(K.E.) = E(hv) — E(B.E.) — Work function
Circular ) oy ¢ 8 Detector
Sample ICKE|<f|p'A|i>|2 (S(EE—Ei—hCU)

Bound<J|-> Free f'}i
— o T T

& !
ga !
o :
°Q 1 .
$8 ! _ f = final states
Core vame|Ei j | = initial states
D
g p = momentum of photoelectron
= A = vector potential of photon
3 (Electric fields)
z

Kinetic Energy (E,;,)

F
hv =Ey, + Ebinding+|®

Binding Energy '



XPS Core-Level :

Element Specific Chemical Information
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XPS Valence Band

: Electronic Structure

o T

—y
- ~

’ N
Ek,,., Spectrum \
’t E
F
/ EZZ? ? Valence Bund \
I
| / |
\ |
\ /
\ hw /
\ /
- = 7
” - - =~ ~ A T ~ - <
, & § Sample N . T .
/ — |
/ _l\\ +—
| Eode Vacuum/level- - = = N(E)
l EF// A B Gl )
\ |
\ /
\ / hw
\ /
N /
™ v
Sea__-~-"
Eq Core level
> N(E)

26



Transmission vs angle modes

Transmission mode
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Measuring electron (kinetic) energy

Hemispherical analyzer

; { e » Energy axis

I Electrons with the same energy

end up at the same position

C.Y. Kim (IBS, SNU)



Measuring electron (kinetic) energy

Hemispherical analyzer
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Angle (momentum) resolved PES

ARPES Spectra
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When all are considered...

EDCs at different angles
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Angle Resolved Photoemission Spectroscopy (ARPES)
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Graphite band structure

Binding energy (eV)
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Notations of Symmetry

Energ}7 gap

L A r A X UK I r
Bloch vector k in different directions

Silicon



Molecular Orbital View of Chemisorbed Carbon Monoxide

by George Blyholder

Department of Chemistry, Universily of Arkansas, Fayctteville, Arkansas (Recelved February 26, 1964)

QOO Frontier Molecular Orbitals
|

T

C .

O OCQ Can we see these orbitals ?
Q e

INIT

CO to Rh metal metal Rh to CO
o donation n* backdonation

Scheme 1. The resembled Blyholder model of CO molecule adsorbed on the 4Rh/
CeO,(Rh-cluster) surface.

Chemical Physics 348 (2008) 161-168
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Probing the charge-transfer state of CO on Pt(111) by two-dimensional infrared-visible sum
frequency generation spectroscopy

K. C. Chou,l’S’>I< S. \?\/’esterberg,l’3 Y. R. Shen,z’3 P. N. Ross,3 and G. A. Somorjailjj
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PHYSICAL REVIEW B 69, 153413 (2004)



Previous Reports 1. INTRODUCTION Pd{111),> The atomic adsorption energy
Pd{111) has been measured by Conrad e? .
at low coverages, while the heat of solu
(AH) is 020 eV.! The chemisorbed H

on of H with the bulk of Pd has been in- more _tightly_ than the dissolved H, but t
oughly due to the high solubility of H in surface well will depend upon the H con
re of the adsorbed H and the relationship  Surface. Engel and Kuipers showed tha
ed and ﬁmmpd H is not as well under- their molecular-beam data predicted a vas
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FIG, 5. Calculated and measured surface states fo o N N N ‘
{111} and (b) H(1x'1) Pd(111} (Ref. 13). The shaded re; A B -1}
r the calculated projection of the bulk bands onto the kmﬂ -2
rface. The solid lines are calculated surface states or ’ e "3
nces, the solid circles are data. The open circles ind ‘ FoLah

aks with some uncertainty.

» intensity of the H Ls split-off state, which is very v
%o =30 eV, The peak in the clean #iw — 30 eV spect



Previous Reports

PHOTOEMISSION INTENSITY

A A A LA L et AL L T I B e WA VNt A Y W LR LA A u.a.l.d.yruvl.ut:
a greal deal more informalion (level symmetries,
orderings, and dispersions) than is available in
ordinary angle-integrated uliraviolet~photoemis-
sion spectroscopy {(UPS}). A complete set of
PARUPS measurements thus presents a much
more stringent test of a hypolhetical geometry
and corregponding electronic-structure analysis.
Nevertheless in the present work, for H on
single crystal Ti (0001), we find lhat even an ex-
lensive set of PARUPS results is not enough Lo
determine the bonding geometry unambiguously,
Comparison of spectroscopic predictions to
PARUPS surface-band pesiticns and dispersicns

MUMMAL EMISRN AHELG {b}

he =22 ey
— Ti (OO0 -H (1]
== T 0N

5. ¢ POLARIZATION

s POLARLZATION

J.J.u{p{.a‘ddr& AV LY W LAl LA fodnr LHARA L Ct_-I.BUD, Lliks n‘.IlJLJ.LI..I.llE,
of the bonding-antibonding pair increases, ulti-
mately driving the antibonding stale out of a large
bulk band gap up into a bulk band wherein it dis-
appears as an observable surface feature. The
gensilivity of these spectiral features to bonding
geometry makes it easy to tell in advance which
geometries will yvield reascnable spectroscopic.
predictions and several do. Satisfyingly, the mini-
mum total-energy configuration is one of those
which is spectroscopically acceptable.

Qur calculations predict the observed work func-
tion difference of about 0,2 eV between the clean
and H-covered Ti (0001) films, although the cal-




Previous Reports A Direct Observation of the Two-Dimensional
n—d Bands for Adsorbed CO

H. Kuhlenbeck, H. B. Saalfeld, and M. Neumann
Fachbereich Physik, Universitit, Barbarastrasse 7, D-4500 Osnabriick,
Fed. Rep. Germany

H.-J. Freund and E. W. Plummer
Institut fiir Physikalische und Theoretische Chemie, Universitit, Egerlandstrasse 3.
Table 1. Possible linear combinations of unoccupied CO states and Nickel d-band levels for bridge

D-8520 Erlangen, Fed. Rep. German
gen, P y bonded CO at T, ¥ and along £ and A, and the dipole selection rules. The notations of the d states are in
accordance with those given by Salem and Leforestier [12] for the [110] direction of fec crystals
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Surface Science Letters

Probing the modifier precursor state:
adsorption of CO on Sn/Pt(111) surface alloys

Chen Xu, Bruce E. Koel *

Surface Science Letters 304 (1994) L505-L511

UPS, He |

on CO/Pd(111) to a shifted Pd surface state. A
recent careful investigation of such a state on
CO/Ni(110) by Kuhlenbeck et al. [24] using
ARUPS and synchrotron light has identified this
state unambiguously to be the 27*-d surface
band. Accordingly, we tentatively assign the peak
at 2 eV in Fig. 2 to the 27* state. A definitive
assignment would require careful ARUPS mea-
surements. In any case, this CO-induced peak at
2 €V does not change significantly from Pt(111)
to the Sn/Pt(111) surface alloys.

{2X2) alioy

Intensity
A

Pl{111}

I T g T v ' ! -

-15 -10 5 0 -10.0 -7.5
Binding Energy

Fig. 2. Hel and He Il UPS spectra of CO saturation coverages

on the Pt(111) surface and the (2x2) and 3 surface alloys.



Probing the charge-transfer state of CO on Pt(111) by two-dimensional infrared-visible sum
frequency generation spectroscopy

K. C. Chou,"* §. \?\fes.terberg,l’3 Y. R. Shen,”” P. N. Ross,” and G. A. SomorjaiuT

CO CO-Pt Pt

(o donation)

PHYSICAL REVIEW B 69, 153413 (2004)
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Theoretical study on the photostimulated desorption of CO — 6p
from a Pt surface —| band
H. Nakatsuji 0.0 6sG*
Departiment of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, 6s0

Kyvoto University, Sakyo-ku, Kyvoto 606-01, Japan and Institute for Fundamental Chemistry, 34-4,
Tankano-Nishihiraki-cho, Sakyo-ku, Kvoto 606, Japan

H. Morita and H. Nakai
Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering,
Kvoto University, Sakyo-ku, Kvoro 606-01, Japan

Y. Murata and K. Fukutani
Institute for Solid State Physics, University of Tokyvo, Roppongi, Minato-ku, Tokyo 106, Japan
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FIG. 2. A schematic orbital correlation diagram for the interaction between
CO and Pt, in the bridge-site adsorption.



Summary

1. Electronic structure of CO on Pt(111) and PtSn surface alloys are measured.

2. Bonding state of back-donation is observed as CO adsorption increase.

3. The energy level of observed bonding state shows agreement with previous
calculation results

4. DFT calculation (KKR method) shows good agreement on clean surface.

5. Supercell calculation of CO/Pt, PtSn will refine our interpretation.



