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1. (25 points) A spirl /2 particle moves in a one dimensional c) (6 points) The rotation matrix can be parametrized by
potentialV (z) as below. The& x 2 Hamiltonian acting on a Euler angles as follows:
. Uy .
spinor¥ = v Is _ id.a  iyB iy
2 D), B,y) = (m'le” e hoeT TR |jm)
] 3
A d - e iy
H=o03=—+01V () = e Hem M) (imlle” h | jm)
= e lem Mg (5).

1 0 0 1 .
whereos = , 01 = and)\ is a real con- o

0 —1 10 Show tha(") (3) is given by
stant.

1(1+ cos3) f\%sinﬂ 1(1—cosf3)
V(z) %sinﬂ cos 3 f\%sinﬂ

VOA (1 —cosf3) \%sinﬂ 1(1+ cos3)

N[

(Hint: (J,/h)? = J,/hfor j = 1)

> d) (6 points) An atom is initially in a state with= 0 and
emits a photon of = 1. Now the atom is in a state
with 7 = 1. It can emit the second photon and goes
back to the initial state with = 0. What is the angular
distribution of the second photon if the first photon is

7‘/0

emitted to thex-direction?

i ax ikx jq i . . . .
a) (9 points) A plane wave of the fo"éa ) e’ isin- 3 (30 points) Consider an electron hopping in two quantum
2
cident from the left. What is the amplitude ratig/a; dots, where the lowest energy state of the electron in each
guantum dot iy and the hopping amplitude s Let us

assume the low energy states of this system can be describec

as a function o&?

b) (8 points) Find the complete wave functiondffor all
x) and the energy eigenvalue produced by this incident

wave. Holdi) = €olds)

by the Hamiltonian:

c) (8 points) Using the spin polarizatioh= ¥fo3¥ = (91/Ho|p2) = (p2|Hol|d1) = —t
| ¥, |% —| W52, compute the reflection coefficieRtand
the transmission coefficiefit of the spin polarization where: represents the site 1 or 2, ahd- 0.

for thi ier.
or this barrier a) (8 points) Find the ground state enefgyand the cor-

responding eigenstat®,) of H,.

2. (25 points) Letj, m) be a normalized eigenstate of angular
b) (8 points) Now consider that an external magnetic field

B, = Byzis applied atthe site 1 a8, = By (cos 02+
sin #X) at the site 2 with a constatit,. We can write
down the magnitude of the Hamiltonian as

momentum operators with following eigenvalues.

('m!|3%|jm) = §(j + )R> 6mim
(7'm'|J:|gm) = mhdji;6mim

a) (7 points) Show thatl, [jm) = Cjn|jm + 1) if Hi = —poo1 - Bi = pioor - Be.

J. = J, +1J,, and calculat&€;,,, (up to phase). .
=y jm (Uptop ) Herey is a constant and = (0., 0, 0.) represents

b) (6 points) Write down th& x 3 matrix representation the Pauli matrices. Using the perturbation theory in the
of J;, J, andJ, for j = 1. weak field limit of up By < t, find the ground state



energy and state vector (including both space and spin
parts) as a function df.

c) (7 points) Now consider the strong field limit of
uoBy > t to find the ground state energy and state
vector when the external magnetic fildd = Bz is
applied at the site 1 ari8, = Bz at the site 2.

d) (7 points) For the strong field limit ofy By > t as (c),
find the ground state energy and state vector as a func-
tion of  when the external magnetic fielR] = Bz is
applied at the site 1 anBy = By(cos 0z + sin 0X) at
the site 2.
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1. (20 points) We have a polymer which consistsh\ofstick-
shaped rigid monomer of length The polymer is on the
plane and each monomer can be aligned only in four direc-
tions: up, down, left, and right, in two dimensions. One end
of the polymer is fixed to the origi@, and the energy of the
polymer is given byE' = k(x4 + ya). The polymer is in
equilibrium at temperaturé.

)’1 A
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a) (5 points) Calculate the partition function of the poly-
mer.

Then, the equation of state may be written in the form

P 00 )\3 £—1
pr-xem ()

wherev = V/N and\ = h/(2rmkpT)"/?. a,(T) are
called the virial coefficients.
The interacting potential(r) is given as

00 for r <,
u(r) = (2)

—ug (7;—“)6 for r > rq.

When (uo/kT) < 1, show that within the second or-
der of virial expansion, the equation of state reduces to
the van der Waals approximation,

(P + %)(v —b) ~ kpT. 3)

Derive the constants andb explicitly.

b) (5 points) Calculate the average enetgypnd the en- c) (4 points) We consider a gas-liquid phase transition

tropy S of the polymer.

¢) (6 points) Repeat the same calculation when each
monomer can be aligned only in two directions, left
and right, in one dimension.

governed by Eq.(3). Sketch the curve Bfvs v for
various temperaturé’, and find the critical tempera-
tureT,, above whichP decreases monotonically with
v. Find the critical pressurg, and volumev, as well.

d) (4 points) Compare the results of (b) and (c) and ex- d) (4 points) Near the critical temperature, show that

plain the physical reasons for the difference.

2. (20 points) Let us consider a classical ideal gas compafsed
N indistinguishable monatomic particles contained in a box
with volumeV in three dimensions.

a) (4 points) Obtain the equation of state.

b) (4 points) We add the interaction between each pair of
particles, and the Hamiltonian is given as

Hz<§’_m)+zu

i<j

vy — v o tY/2 whent > 0, wheret = (1 — T/T,)
is assumed to be small, i.¢.< 1, v, andv, are the
volumes in gas and liquid phases, respectively.

e) (4 points) Obtain the isothermal compressibility when

t < 0 andt > 0, respectively.
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1. (30 points) A particle of mass: and charge; is released
from rest from a distance, above an infinite grounded con- p P(O’ 0, z)
ducting plate. Neglect relativistic effects and gravity.

T ol

<0

X

a) (7 points) Using the Biot-Savart law, find the magnetic

NS ) inductionB(z) at a pointP(0, 0, z) in the z-axis. You
infinite conducting plate _ _ _ _
may leavedimensionlessintegral in your answetr.

a) (7 points) Calculate the force on the charge and write b) (6 points) The magnetic induction due to a current loop

down the equation of motion for the charge. can be expressed as that due to a magnetic dipole when

z > a,b. Find the magnetic dipole moment of this
b) (7 points) By integrating the equation of motion, ob- current loop from the following definition:
tain the time passed until the particle hits the plane.

You can neglect the radiation loss and you may leave = %/x’ x Jd3a'. 4)

the answer in terms of dimensionlessintegral.

. o And show that the magnetic induction from (a) reduces
¢) (9 points) The electric field from an accelerated charge
o to that ofu whenz > a, b.
is given as
_q @
 drey c2Ot2

in the limit of large distance from the source, where

N]rets Suppose that we cut the circuit around the0, 0) point in
the x-axis leaving a small gap of widtti as shown in the

L . ) following figure.
f is a unit vector from the charge to the observation

point. Using this expression, derive the radiated power <
as a function ofz. (Hint: It might be easier to derive b P(()7 0, Z)
Larmor formula for the radiated power.)

Now let us replace the conducting plane by a semi-infinite =it
dielectrice. That is, forz > 0, there is a vacuum and for (\’b\oe y
1 1
1

z < 0, the space is filled with the dielectric.

d) (7 points) Calculate the force on the chargehen it . '
is at a distance, above the plane. (Hint: an image so- T

lution exists where image charges are placed at either
+2z9 0r—2p.) ¢) (6 points) Find the induced charges at the gap from the
continuity equation. (You can assume uniform current
2. (25 points) An elliptical loop of semi-axesandb lies in the distribution inside the current loop.)

xy-plane as shown in the following figure. The loop meets d) (6 points) Find the magnetic inducti@{z) at a point

x-axis at+a andy-axis at+b and assume that > b. An P(0,0, 2) in this case when > a, b.

alternating currenfye —** is supplied to this loop. Assume
the low frequency limit £rc/w is large compared to the di- 3. (25 points) Let us consider a scalar electromagnetic wave
mensions of the problem.) incident on a scattering center. The incident plane wave of



wavelength\ can be written as
ikfio-X
Yinc = AoeﬂcnU ,

wherek = 27/ andfyg is a unit vector to the direction of
the propagation. When the scattering center is located at
the scattered wave observed from a pdirdtx can be writ-
ten as
L ethIX=X| ;

wsc =k ff(e)lf 'l/Jinm
wheref is the scattering angld, is a length scale for the
scattering center.

P atx

Vsc

a) (6 points) What is the differential cross sectigf§; ) ,
for a single scattering center?

b) (7 points) Now let us consideé¥ scattering centers dis-
tributed atx’ = x,, j = 1,---, N, localized around
X = 0. Inthe limit L <« A < |x — x|, show that the
differential cross section fronV localized scattering
centers can be written as

do o d_O' 2
& - (§) wal

q = kﬁ() — kﬁ,

and find the expression fdr(q). (Hint: It might be
easier to use an approximatioph— x'| ~ r — A - X/,
wheref is the unit vector in the direction to the point
P atx from the origin.

c) (7 points) For a continuous distribution of scattering
centersF'(q) can be written as an integral such as

F@ = [ o)X ax.

14

If a sphere of radius is uniformly filled with the N
scattering centers, show th&fq) is given as

F(q) = — (sina — acos a),
a

with o« = |g| R.

d) (5 points) When an electron beam of high energy is
incident on a carbon foil, it can be considered electron
matter wave scattered by charge distributions inside the
carbon nucleus. R. Hofstadter, Nobel laureate in 1961,
performed an experiment with an electron beam of en-
ergy 420 MeV and measured the following differen-
tial cross sections. From this measurement, the first
diffraction minimum has been found ff| ~ 1.8fm™*

(fm is femto-meter, which is 10'°m). Assuming that

the carbon nucleus is a uniformly charged sphere and

using the previous result, estimate the radius of the car-
bon nucleus. You can use the fact thaih 4.4934 =

4.4934.
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1. (20 points) A satellite under the gravitational pull isaicir-
cular orbit of radiusk. Consider a dumbbell-shaped satel-
lite consisting of two point masses of massonnected by a
massless rod of length(much less thak (see figure). The
orientation of the satellite relative to the direcrtion aa

the center of the earth is measured by argléthe mass of
the earth i\, and the gravitational constantdg.

a) (5 points) Obtain the Lagrangian.
b) (3 points) Obtain the equation of motion for

¢) (5 points) Determine the value ¢ffor the stable ori-
entation of the satellite.

d) (4 points) Show that the angular frequency of small

angle oscillation of the satellite about its stable orien-

tation is /3 times the orbital angular velocity of the
satellite.

d)
e) (3 points) Explain briefly the physics of an automatic
stabilization of the orientation of orbiting satellites.

2. (20 points) A uniform string has lengfhand mass per unit

lengthp. It undergoes small transverse vibration in the

2

o3
=

o

—

plane with its end poinds held fixed @t, 0) and (L, 0) re-
spectively. The tension iB. A velocity-dependentfrictional

force is present: if a small piece of lengthhas transverse
velocity v the frictional force is—kvdl.

;o T

Using appropriate approximations, the following equation
hold for the vibration amplitudg(z, ¢):

0%y oy 0%y .
22 T4 = b O
y(0,8) = 0=y(Lt) (i)

a) (7 points) Find the constantsandb in (i). If you can-

not do this part, take andb as given positive constants
and go on.

b) (5 points) Find all solutions of (i) and (ii) which have

the product formy = X (x)Q(¢)

. You may assume
a® < b/L>.

¢) (5 points) Supposg(x,0) = 0, and

y(x,O)Asm( 7 )JrBsm( T )

Here A and B are constants. Fing(x, t).

(3 points) Suppose, instead, that 0 andy(z,0) = 0
while

Nl

0<z<
L<z<L

Findy(x,t).



