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1. (20 pts) Consider a bead of mass m which

oscillates as a simple harmonic oscillator

(SHO): F⃗SHO = −k⃗r where r⃗ = (x, y, z) and

k is constant.

a) (5 pts) Write down the equations of

motion in each dimension and find a

solution of the equations. If there is a

damping force, F⃗damp = −b
d⃗r
dt

where b

is constant, find solutions changed by

the damping force with underdamp-

ing condition.

Now the bead is constrained to move on a

frictionless cylinder (on the surface) of ra-

dius R as shown in the figure. The force of

constraint (the normal force of the cylinder)

and the gravity F⃗g = −mgẑ act on the bead

with the F⃗SHO = −k⃗r (ignore the damping

force).

b) (5 pts) Using cylindrical coordinates

(ρ, θ, z), find the Lagrangian L and

write down the Lagrange’s equations

of motion.

c) (5 pts) Find a solution of the La-

grange’s equations of motion. Is the

angular momtnum conserved about

the axis of symmetry of the system?

d) (5 pts) The cylinder surface is now

changed by the shape of a parabola,

cz = ρ2. Show how the Lagrange’s

equations of motion are changed.
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2. (20 pts) Consider a coaxial cable consisting

of a copper wire of radius a, surrounded by

a concentric copper tube of inner radius c.

The space between the wire and the tube is

partially filled (from b to c) with material of

dielectric constant ϵ as shown in the figure.

Q is the charge on a length ℓ of the inner

conductor. (The space from a to b is vac-

uum.)

a) (5 pts) Find the electric displacement

D at distance r (a < r < c).

b) (5 pts) Find the electric field E at dis-

tance r (a < r < c).

c) (5 pts) Find the potential difference be-

tween r = c and r = a.

d) (5 pts) Find the capacitance per unit

length of this cable.
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1. (15 pts) Consider a one dimensional pe-

riodic potential of N potential cores with

a period a, such that U(r + a) = U(r).

Hamiltonian of this system is given by

Ĥ =
P̂2

2m
+ U(R̂),

where P̂ is a momentum operator and R̂

is a position operator. The eigenfunctions

of this Hamiltonian Ĥ satisfy a periodic

boundary condition

ψ(r) = ⟨r|ψ⟩ = ⟨r + Na|ψ⟩ = ψ(r + Na).

We can define a translation operator which

translates r by a as T̂a. That is, if one ap-

plies T̂a on a spatial position vector |r⟩,

T̂a|r⟩ = |r + a⟩, ⟨r|T̂†
a = ⟨r + a|.

a) (3 pts) Show that T̂a can be expressed

as T̂a = e−iP̂a/h̄.

b) (3 pts) Show that one can find |ψ⟩
which is a simultaneous eigenfunction

of both T̂a and Ĥ of this system.

c) (3 pts) Let |ψ⟩ be a simultaneous

eigenfuction of T̂a and Ĥ. Say T̂†
a |ψ⟩ =

Ca|ψ⟩, Ĥ|ψ⟩ = E|ψ⟩. Let |k⟩ be an

eigenfunction of P̂, P̂|k⟩ = h̄k|k⟩. By

calculating ⟨k|T̂†
a |ψ⟩ find the eigen-

value Ca when ⟨k|ψ⟩ ̸= 0. Also ex-

press ψ(r + ma) in terms of ψ(r) for

such k using the Ca value you found

(m : an integer).

d) (3 pts) Express the eigenfunction

ψ(r) = ⟨r|ψ⟩ of this system’s Hamil-

tonian for a k (⟨k|ψ⟩ ̸= 0) in terms of

a periodic function u(r) = u(r + a). In

other words, express ψ(r) as a product

of periodic function of r and the rest.

e) (3 pts) Can the Ca value be continu-

ous? Explain. How many distinctive

Ca values are possible? Explain.
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2. (12 pts) Let us consider an electron with

spin 1/2. Its spin operator S = (Sx, Sy, Sz)

can be written in terms of three Pauli ma-

trices, σ = (σx, σy, σz),

S =
h̄
2

σ,

where

σx =

(
0 1

1 0

)
,

σy =

(
0 −i

i 0

)
,

σz =

(
1 0

0 −1

)
.

Now we can define the two eigenstates of

σz, such that σz |+⟩ = + |+⟩ and σz |−⟩ =

− |−⟩

a) (3 pts) Find the eigenvalues and eigen-

states for Sx. Express these eigenstates

in terms of |+⟩ and |−⟩, i.e. the eigen-

states of σz defined earlier.

b) (3 pts) One of the eigenstates obtained

in (a) should satisfy σx |ψx⟩ = + |ψx⟩.
Find expectation values for three spin

operators Sx, Sy and Sz for this eigen-

state |ψx⟩.

After preparing an electron in |ψx⟩ state

defined in (b), a uniform magnetic field

B = B0ẑ(B0 > 0) has been applied to the

electron at time t = 0. We would like to

study the spin wave function of this elec-

tron under the uniform magnetic field as a

function of time. The electron has the mag-

netic moment and its operator can be writ-

ten as

µ =
gq

2me
S,

where q and me are the charge and the mass

of the electron, while g is called g-factor

and is equal to 2. Using the potential en-

ergy of a magnetic moment under the mag-

netic field, the Hamiltonian of this electron

under B = B0ẑ(B0 > 0) can be written as

Ĥ = −µ · B.

c) (3 pts) Show that the two eigenstates

|+⟩ and |−⟩ are also eigenstates for

this Hamiltonian Ĥ. What are the en-

ergy eigenvalues for |+⟩ and |−⟩ for

this electron in |ψx⟩ state under the

uniform magnetic field B = B0ẑ(B0 >

0)?

d) (3 pts) Find the expectation value of Sx

for this electron as a function of time

t.
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3. (13 pts)Consider a one-dimensional finite-

size lattice system composed of Ising mag-

netic dipoles Si, which can either point up

(Si = 1) or point down (Si = −1), with

open boundaries at both ends. Here the

subscript i = 1, 2, ..., N denotes the lattice

sites where an Ising dipole is located. As-

suming that it is energetically favorable to

have nearest-neighbor spins aligned in par-

allel, the sytem can be described by the fol-

lowing Hamiltonian,

H = −J
N−1

∑
i=1

SiSi+1, J > 0.

a) (4 pts) Show that the energy of a uni-

form state (as in the figure) with all

spins pointing up is E = −J(N − 1).

What is the free energy Funiform =

E − TS of such a uniform spin con-

figuration at a finite temperature T?

(Hint: use the definition of the en-

tropy S = kB ln Nconfig where Nconfig is

the number of possible configurations

with the same energy.)

b) (4 pts) Suppose that the system is com-

posed of a spin-up domain and a spin-

down domain with a domain wall in-

between as shown in the following fig-

ure.

What is the free energy Fdomain of such

a system? (Hint: the location of the

domain wall can be anywhere in the

lattice.)

c) (5 pts) Comparing Funiform and Fdomain,

argue that the average magnetization

m =
1
N

N

∑
i=1

⟨Si⟩ is always zero at a fi-

nite temperature when N → ∞.
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4. (20 pts) In research laboratories, we often

have to measure the energy of particles

such as photons and electrons. In case of

light, one can use gratings to disperse the

light (making different wavelengths go into

different directions) and find the energy of

the light from the direction. Such an in-

strument to disperse particles with differ-

ent energies is, in general, called a spec-

trometer. From a practical point of view in

physics research labs, one should design a

spectrometer that is capable of measuring

the energy over quite a large range. Let’s

imagine that we need to build a spectrom-

eter to measure the energies of electrons

in an electron beam in vacuum (that is, an

electron analyzer). You can assume that the

electrons have kinetic energies in the range

of 100 eV – 10 keV which are typical en-

ergy values for electron beams for common

physics instruments such as electron micro-

scopes and electron analyzers.

a) (8 pts) In case of electron beams,

electrons with different kinetic ener-

gies travel along different paths in

an electric or magnetic field. Please

design an experimental set-up that

uses electric or magnetic fields to dis-

perse electrons and measure their en-

ergies. You can use one or more

of the following parts: conducting

plates, conducting spheres, conduct-

ing cylinders, solenoid, toroid, con-

ducting wires, AC/DC power sup-

plies, voltmeters, ammeters, and elec-

tron detectors. You can also use other

instruments if necessary. Please be

specific on experimental details such

as generation of electric (or magnetic)

fields and arrangements of spectrome-

ter parts.

b) (7 pts) Please explain the equation

to extract electron energies from the

measurements. In addition, discuss

possible measurement errors.

c) (5 pts) On the other hand, one can also

imagine using a grating to disperse

electron beams with different energies

via the wave nature of electrons. Con-

sidering previous research in physics

history, please discuss what can be

used as a grating for electron beams.

Also, from a practical point of view,

discuss possible problems using such

a grating for an electron analyzer.


