소속대학 학과(부)	자연과학대학 물리•천문학부	학번	성 명		감독교수 학	(인)

자격시험 문제

과목명 : 고전역학

2020. 07. 31 시행

1. [50 pts] The potential energy of a particle of mass m moving in a plane is given by $U(r)=k r$, where r is the distance from the origin of the force, and k is a positive constant.
(a) [10 pts] First, by using the concept of an effective potential (denoted by $V_{\text {eff }}$) in plane polar coordinates (r, θ), find the radius r_{0} at which a particle with constant angular momentum l is in a circular orbit.
(b) [10 pts] Write the Lagrangian and Lagrange's equations of motion of the particle.
(c) [10 pts] Find the Hamiltonian and Hamilton's equations of motion. Here use p_{r} and $p_{\theta}(=l)$ to denote the particle's momentum in r and θ, respectively. Using the equation(s) you find here, verify the answer acquired in (a).
(d) [10 pts] Show that for the circular orbit of radius r_{0}, a slight radial nudge x (i.e., $r=r_{0}+x$ with $x \ll r_{0}$) causes only small radial oscillations. You will need to derive the equation of motion for these oscillations to the first order in x. Obtain the ratio $T_{\text {orb }} / T_{\text {osc }}$, where $T_{\text {orb }}$ is the particle's orbital period, and $T_{\text {osc }}$ is the period of small radial oscillations.
(e) [10 pts] Generalize your results for $U(r)=k_{2} r^{n} \quad$ with constants $\quad k_{2} \quad$ and $\quad n$. In particular, determine the ratio of two oscillation periods $T_{\text {orb }} / T_{\text {osc }}$ under the conditions $k_{2} n>0$ and $n>-2$.
2. [50 pts] A bead of mass m is threaded on a frictionless, circular wire hoop of mass M and radius a. The hoop is pivoted on its rim at point P (see the figure) so it can swing freely in its plane in the presence of the uniform gravitational field g.

(a) [10 pts] Determine the Lagrangian of the system using the generalized coordinates θ and ϕ shown in the figure.
(b) [10 pts] Find Lagrange's equations of motion of the system assuming small oscillations about the equilibrium points $\theta=\phi=0$.
(c) [20 pts] From your answer in (b), determine the eigenfrequencies and describe the normal mode motion. You will need to write the angular displacements as functions of time, $\theta(t)$ and $\phi(t)$.
(d) [10 pts] When $m \ll M$, the system becomes a simpler physical pendulum of mass M. Assuming small oscillations about the equilibrium point $\theta=0$, find $\theta(t)$ and its oscillation frequency. Verify that, in the limit $m \ll M$, the displacement $\theta(t)$ found in (c) reduces to what you acquired here in (d).

소속대학 학과(부)	자연과학대학 물리•천문학부	학번	성명		감독교수 학	(인)

자격시험 문저

과목명 : 양자역학

1. [50 pts] Consider a 1D infinite potential well $V(x)$ such that

$$
\begin{aligned}
& V(|x|<a)=\left(\hbar^{2} / m\right) V_{0} \delta(x) \\
& V(|x|>a)=\infty .
\end{aligned}
$$

(a) [10 pts] Write down the boundary conditions of the wave function $\psi(x)$ of a particle to satisfy the Schrodinger eq.
(b) [10 pts] Show the parity operator \hat{P}, which inverts the x coordinate, commutes with the Hamiltonian \hat{H}. Argue that the non-degenerate eigenfunctions of \hat{H} are also eigenfunctions of \hat{P} with eigenvalues of 1 (even-parity) or -1 (odd-parity).
(c) [10 pts] Solve for even-parity wave functions $\psi_{n}^{e}(x)$ and find the conditions satisfied by their energy eigenvalues E_{n}. [Here, you can ignore wave function normalization.]
(d) [10 pts] Following (b), consider two extreme cases of $V_{0}=0$ and $V_{0}=\infty$. Find E_{n} for both cases and plot the ground state wave functions.
(e) [10 pts] Now, consider odd-parity wave functions $\psi_{n}^{o}(x)$. Write down $\psi_{n}^{o}(x)$. Show that their energy eigenvalues are independent of the value V_{0} and explain why in words.
2. [50 pts] Consider two electrons (i=1,2) located at two lattice sites $(\mathrm{k}=1,2)$. The Hamiltonian of the system is effectively written as $\hat{H}=-J\left(\sigma_{x}^{(1)} \sigma_{x}^{(2)}+\sigma_{y}^{(1)} \sigma_{y}^{(2)}\right), \quad$ where $\quad J>0$. Here, $\sigma^{(i)}$ is the Pauli-operator for $1 / 2$ spin for i-th electron.
[Hint:
$\sigma_{x}^{(1)} \sigma_{x}^{(2)}+\sigma_{y}^{(1)} \sigma_{y}^{(2)}=\vec{\sigma}^{(1)} \cdot \vec{\sigma}^{(2)}-\sigma_{z}^{(1)} \sigma_{z}^{(2)}$
Total spin operator $\vec{S}=\frac{\hbar}{2} \vec{\sigma}=\frac{\hbar}{2}\left(\vec{\sigma}^{(1)}+\vec{\sigma}^{(2)}\right)$]
(a) [10 pts] Find energy eigenvalues and degeneracies of this system.
(b) [15 pts] Suppose the spatial parts of the electron wave functions are written as $\phi_{k}\left(\vec{r}_{i}\right)$, where $\mathrm{i}, \mathrm{k}=1,2$, and spin parts are written as $\left|\uparrow>_{i},\right| \downarrow>_{i}$, where $\mathrm{i}=1,2$. Express the total wave functions of the system for eigenvalues obtained in (a).
(c) [10 pts] Now, imagine an external magnetic field $\vec{B}=B \hat{z}$ is applied. Write down the Hamiltonian of the system.
(d) [15 pts] Find energy eigenvalues of the system in (c), and obtain the magnetic field value when the ground state of the system changes.
[For electrons, assume g-factor is 2]

소속대학 학과(부)	자연과학대학 물리•천문학부	학번	성 명		감독교수 학	(인)

자격시험 문제

과목명 : 전기역학

2020. 07. 31 시행

1. [40 pts] A uniform electric field $E_{0} \hat{x}$ exists in a dielectric having permittivity ϵ_{a}. With its axis perpendicular to this field, a sufficiently long cylindrical dielectric rod (extended along the z-direction) having permittivity ϵ_{b} and radius a is introduced.

Using a cylindrical coordinate (ρ, θ, z), we will look for solutions of Laplace equation inside ($\phi_{b}(\rho, \theta)$) and outside $\left(\phi_{a}(\rho, \theta)\right)$ of the rod with the following boundary conditions.
(i) $\phi_{a}=\phi_{b}$ at $\rho=a$
(ii) $\epsilon_{b} \frac{\partial \phi_{b}}{\partial \rho}=\epsilon_{a} \frac{\partial \phi_{a}}{\partial \rho}$ at $\rho=a$
(iii) $\phi_{a} \rightarrow-E_{0} x=-E_{0} \rho \cos \theta$ for $\rho \gg a$
(a) [10 pts] Justify the boundary conditions (ii) and (iii).
(b) [20 pts] The general forms of the potential outside and inside the rod satisfying the boundary conditions are

$$
\begin{gathered}
\phi_{a}=-E_{0} \rho \cos \theta+\sum_{k=1}^{\infty} \rho^{-k}\left(C_{k} \cos k \theta+D_{k} \sin k \theta\right) \\
\phi_{b}=\sum_{k=1}^{\infty} \rho^{k}\left(A_{k} \cos k \theta+B_{k} \sin k \theta\right) \\
\text { (we set } \phi=0 \text { on } \mathrm{y}-\mathrm{z} \text { plane) }
\end{gathered}
$$

Determine the potential and the electric field at points outside and inside the rod, neglecting the end effects. [20pts]
(c) [10 pts] Sketch the electric field lines inside and outside the rod when $\epsilon_{a}>\epsilon_{b}$.
2. [60 pts] Consider two nonconducting media ($\sigma=0$) described by ϵ_{1}, μ_{1} for a medium 1 and ϵ_{2}, μ_{2} for a medium 2, respectively. A plane wave in medium 1 is incident on medium 2 at an angle θ_{i}. The incident, reflected, and transmitted electric fields are given by $\overrightarrow{E_{i}}=\overrightarrow{E_{0 i}} e^{i\left(\overrightarrow{k_{i}} \cdot \vec{x}-\omega_{i} t\right)}$, $\overrightarrow{E_{r}}=\overrightarrow{E_{0 r}} e^{i\left(\overrightarrow{k_{r}} \cdot \vec{x}-\omega_{t} t\right)} \quad$ and $\quad \overrightarrow{E_{t}}=\overrightarrow{E_{0 t}} e^{i\left(\overrightarrow{k_{t}} \cdot \vec{x}-\omega_{t} t\right)}$, respectively.

(a) [20 pts] For the given incident angle θ_{i}, find the reflected angle θ_{r} and the transmitted angle θ_{t}. Consider the two cases that the electric field is 1) perpendicular and 2) parallel to the plane of incidence, respectively.
(b) [20 pts] Find the condition that the incident wave is totally reflected.
(c) [20 pts] Finally, assume that an incident wave in a nonconducting medium is incident on a perfectly conducting medium ($\sigma=\infty$) with $\theta_{i}=0$. For a given $\overrightarrow{E_{0 i}}$, find $\overrightarrow{E_{0 r}}$ and $\overrightarrow{E_{0 t}}$.

소속대학 학과(부)	자연과학대학 물리•천문학부	학번	성 명		감독교수 학	(인)

자격시험 문제

과목명 : 통계역학

2020. 7. 31 시행
1. [50 pts] Consider a polymer composed of N rod-like monomers of length a. The polymer is laid on a plane so that each monomer can be aligned only in four directions: up, down, left, and right. One end of the polymer is fixed to the origin O , and the other end A is allowed to move freely. If A is located at $\left(x_{\mathrm{A}}, y_{\mathrm{A}}\right)$, the energy of the polymer is given by $E=\epsilon_{x} x_{\mathrm{A}}+\epsilon_{y} x_{\mathrm{B}}$. The polymer stays in equilibrium at temperature T.

(a) [10 pts] Calculate the partition function.
(b) [10 pts] Calculate the mean energy per monomer and the entropy per monomer.
(c) [15 pts] Calculate the mean square distance between O and A .
(d) [15 pts] Now assume that N is even, and that A is fixed to O so that the polymer is shaped like a ring. In the limit $N \rightarrow \infty$, calculate the entropy per monomer and compare it to the corresponding result obtained in (b) when $\epsilon_{x}=\epsilon_{y}=0$.
Hint: The following formulas may be useful.
$\sum_{k=0}^{n}\binom{n}{k}=\binom{2 n}{n}$ for any integer $n \geq 0$,
$\ln (n!)=n \ln n-n+O(\ln n)$ for $n \gg 1$.
2. [50 pts] Consider an ideal gas at temperature T and chemical potential μ in contact with an adsorbing surface consisting of N_{s} adsorbing sites. Each site can bind with at most one gas molecule and, upon binding, changes the energy of the gas molecule by $\epsilon<0$.
(e) [10 pts] Obtain the grand partition function describing adsorption.
(f) [10 pts] Using the above result, calculate the adsorption coefficient $\theta \equiv\left\langle N_{\mathrm{a}}\right\rangle / N_{\mathrm{s}}$, where $\left\langle N_{\mathrm{a}}\right\rangle$ is the mean number of adsorbed gas molecules.
(g) [15 pts] Note that the partition function of the ideal gas is given by
$Z=\frac{V^{N}}{M!\lambda^{3 N}}$,
where N is the number of gas molecules, V the gas volume, and λ is the thermal wavelength (determined by temperature). Given these, express the chemical potential μ of the gas in terms of temperature T, pressure p, and thermal wavelength λ.
(h) [15 pts] Using the above results, show that the pressure dependence of the adsorption coefficient can be written as
$\theta \approx \frac{p}{p+p_{0}(T)}$.
Also, explicitly calculate $p_{0}(T)$.
