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1. [5 pts] Consider a non-relativistic
collision process in a free space, where
a probe particle of mass m moves at
velocity v in the +z direction and
collides with a target particle of mass M
which is initially at rest. A particle
detector is placed far from the collision
site, and it detects the probe particle
which are scattered from the target
particle with an deflection angle of @
from the incoming =z-axis. The probe
particle’s  kinetic  energy Ey tina 18
measured at the detector. The ratio of
Ey 1 10 the initial kinetic energy of the
probe particle is denoted by e. Obtain
the expression of M/m as a function of
€ and 6.
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2. [15 pts] Two particles with mass m are
connected by a massless string of fixed
length b. The particles are subject to a
gravitational force. One particle slides along
the frictionless surface of a cone of
half-angle a with vertex at the origin. The
other particle is hung at the position z = a
(a < 0) by the string threaded through a
small hole at the bottom of the cone.

(a) [2 pts] Using a generalized coordinates
of (r, 8, z, a) as shown in the figure, write
down the Lagrangian.

(b) [4 pts] Write down all equations of
constraints among the coordinates (r, 6, z,
a.

(c) [7 pts] Write down all equations of
motion with the Lagrange multipliers.

(d) [2 pts] Show how the normal Force £,
from the surface and the tension 7 from the
string are related to your Lagrange
multipliers.
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1. [10 pts] Consider a particle of mass m
that satisfies the Schrodinger equation with
the following potential,
Vx) =0 (forx<0)
=Ué(x—a) (forx=0)
. where a>0 and U < 0.

(a) Write down the wave functions and
boundary conditions for the particle. [4 pts]

(b) Find the condition to have a bound state,
in terms of a and U. [2 pts]

Now consider the different potential as
follows,

Vix) =U{6(x+a)+6(x — a)}
, where a>0 and U < 0.

(c) Assume the condition in (b) is met, then
there are two bound states for this potential.
Oraw a qualitative sketch of the two bound
states. (Hint: Consider the symmetry of the
potential.) [2 pts]

(d) Explain by words, why the condition to
have the second bound state for this
potential is the same as the condition found
in (b). [2 pts]
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2. [15pt

(a) [4pt] Consider an one-dimensional

simple harmonic oscillator centered at z=0.
The Hamiltonian is given by

2
T

D 2
____.__'_ -
2m muw 2

This can be solved by quantizing it
[p,z] = —in
and by introducing ladder operators

a= 2—1ﬁ(\/mw:1:+i ),

2

H,

b
vmuw

a’ = %(\/mwx—i \/Z—w)

Work out [a,a'] and express H, in terms
of the ladder operators.

(b) [2pt] Consider a similar simple
harmonic oscillator, but this time centered
at =c. Shiftng  z—z—¢ in the
expressions in (a), obtain new ladder
operators o, o', and write H, in terms of

these new ladder operators.

Now, we introduce a perturbation term in
the Hamiltonian so that we want to solve:
(Hy+XH)In> = Eln> with A< 1.

The energy eigenvalues
eigenvectors without perturbation are

original and

Hyln, > =En(0)|n0> , <nglng> =1,

and <nglmy>=0 for n = m

(non—-degenerate).

perturbed eigenvalues  and
eigenvectors in terms of original ones in
powers of A

In> =Iny >+ Xln, >+ 0(\?)

<nglmn, >=0,

Expanding

E,=EY\EV+ 0()?) |
the first~order energy correction that we are
interested in is BV = < nol Hylng > .

(c) [5pt] We turn on the perturbation
H;=z in addition to the H, in (a)
2 2
_ - P 2T
H= H,+ \H, 2m+mw 2+/\:1:

Using the results obtained so far, show
that EY=0 and explain this using the
symmetry of the system.

(Hint: Consider parity.)

(d) [4pt] If we add H,=2z to H, in (b),
what would be E,E“? Is it also zero or not;

explain  this using the symmetry,
comparison with the answer (c).

in
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1. [10 pts] Consider
charge density p(:’) as shown below. Then
the potential r by

at T
¢(r) = /dar

a system with the

is given

(a) [2 pts] From the multipole expansion of
the potential ¢(r) for |d> |7l find the
expressions for the monopole and dipole
terms, respectively.

From now on, let us consider
a sphere of radius R with a
charge density p=p,cosd where
Py IS a constant.

x

(b) [3 pts] Calculate the monopole and
dipole terms.

(c) [3 pts] Calculate the electric field at
(r,0,0), %(r,o,r) and (0,0,r), respectively

for r> R>0.

(d) [2 pts] Draw the equipotential lines and
electric field lines, respectively, in the zz
plane. Here, assume R—0.




sageE | BEMSHE | L. e A=
g sEps | (2atwa | Tand CIK:

2019SHA T AMAF @} Ad-UEESHaEE
7|27 HY-PEIA PBA™

=E 2 KT |ASH 2019.04.29. A]

o

2. [10 pts] The wave number k of a
electromagnetic  wave packet in an
isotropic, dispersive medium is given by
k=w(ue)’? as a function of frequency w,
permittivity of the medium ¢ and
permeability of the medium x. The
permeability and the permittivity are
functions of frequency, p=pw), and e=«w).

(a) Find the group velocity », of a wave

9

packet in this medium [3 pts].

(b) The Poynting vector is given by,
—S)Zvg(?.tl,.;-i-uﬂ)ﬁzE"X?{>

where «; and u, are electric and magnetic

energy densities. Show that the
electromagnetic wave energy density is
given by,

2 2
u=uE+uH=%(e+w;—;)+%(u+w%) [4 pts]

(c) Show that in a medium in which both
e=e(w) and up=u(w) are negative, the group
velocity and the phase velocity of the wave
packet are opposite in direction. [3 pts]
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1. [10 pts] Consider an onc-dimensional chain of N Ising
magnetic dipoles S, (i-1,2,.,N) in an external magnetic
field h. Each dipole can either point up (S;= +1, parallel
to k) or point down (S;= —1 , anti-parallel to h). We
adopt a periodic boundary condition Sy =S In this
Problem, let us assume that each dipole does not interact
with any other dipoles or any other degrees of freedom of
the substance. The system is immersed in a heat
reservoir of absolute temperature T.

() [2 pts] Using a partition function for a canonical
distribution, z(T)= 3. ¢ %"  with the Boltzmann
n=20

constant k, , find the mean cnergy in the system, E.
One may simplify the result by using tanhx = %
e e

What value does E approach when T is very large?

Now let us acquire the above cxpression for E from
microscopic considerations.

(b) [3 pts] Show that the total number of states of the
system with its total energy E lying in the range of
N1 SE

N E\(ne B 2R
h h |,
5 ! 2 !

Assume that 6E is very small compared to E but is still
larger than S;h (e, S;h<éEKE ).

[E, E + SE] is given by 2(E)=

(c) [2 pts] Using the approximation InN!=NIlnN — N for
large N, write In2(E) as a function of N, £ and k. Onc
may eliminate thce term containing 6F by utilizing the
assumption SEL E .

(d) [3 pts]l Finally, using the definitions of absolute
temperature and entropy, find the relation between 7T and
E. Comparc the result with (a).
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2. [10 pts] Now we consider the samec system as in
Problem 1, but assume that there cxists interaction
between  dipoles. Assuming that it is energctically
favorable to have nearcst-neighbor spins aligned in
parallel, the system is now described by the following
Hamiltonian,

M=

~
H= _JZSin’+1 —h

i=1 i

S, J>0, h>0,

1

(a) [2 pts] To treat the interaction J between magnetic
dipoles, let us use a mean field approximation

1

Al
N E< S; > indicates

i=1

85,841 = m(S+S,+,)—m® where m=

the average magnetic moment. Show that, in the mean
field approximation, the Hamiltonian is given by

N
H~ H, =~ (2Jn+h)Y)S + JNm

i=1

(b) [2 pts] Using the mean field Hamiltonian H, given
above, compute the partition function.

{¢) 2 pts] Show that the average magnetization m  is

2Jm + h
k,T

given by m=tanh[
(d) [2 pts] From now on let A=0 . Find T, that satisfies

_ | nonzero, T< T,
~ o, T>T,

(e) [2 pts] Find m when m is very small, by using the

approxXimation tanhz =~ z — %ﬁ.
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1. [15 pts] Particles that are hazardous to
a human body are categorized as fine dust
less than 10 microns (PM10) in diameter,
and ultrafine dust less than 2.5 microns
(PM2.5) in diameter. Provide your answer
to the following questions in English or
Korean.

(a) [10 pts] Design a device that can
measure the concentration of PM10 and
PM2.5. Provide a schematic of your device,
a list of necessary equipment or materials,
and an explanation how to measure the
concentration of the particles.

(b) [5 pts] Describe any error sources of
your measurement.




