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1. Let us consider a one-dimensional model for the|2. H# is a perturbation to the unperturbed

two—electron system resembling the helium atom,
taking d-function potentials between
Assuming a fixed nucleus, we may then write the
Hamiltonian operator for the system as

particles.

Ze’§(z,) — Ze5(x,)

Here, for the ‘'helium' (rather than helium-like ions),
Z=12. We want to find the approximate ground state
of this system by using the variational method.
(Assume that the ground state has the spatial wave
function which is exchange-symmetric).

(a) Give brief explanations for various potential terms
appearing in the above Hamiltonian. (10 pts)

(b) Now, for the system defined by the Hamiltonian
without the two-particle interaction term (but for
arbitrary Z> 0)

H{] — _'._._(_ e e — Zegé(xl)_ 262(5(932):
F ax

find the corresponding ground state energy E,(Z)
and also ground state eigenfunction ¥,(z,,z,;2).
(10 pts)

(c) Find the approximate ground state energy E of
the original system (i.e., for the above Hamiltonian
H and Z=2), by using the solution of (b), i.e.,
V,(z,,z,;Z) as the variational solution possessing a
variational parameter. (10 pts)

(d) In (c), what is the physical significance of taking
Z as a variational parameter? (10 pts)

Hamiltonian H (the energy levels are assumed to

be nondegenerate). The total Hamiltonian can be
written as H°+AH , where X is assumed to be a
small real number. The first order correction to the
n™ energy eigenvalue be obtained
the n"

E,=(@H W),

Tt

can

w, s

as

where energy

eigenstate of H°, while the first order correction to
the n" energy eigenstate is
- (w)|H @),

T

m?*

where E? is the n" energy eigenvalue of H'.

(a) Starting from the above conditions and results,
derive the second order correction to the n" energy
eigenvalue (10 pts).

A particle of mass m moves (nonrelativistically) in
the three—dimensional potential

1
V= Ek(xz +y2 + 22+ Azy),

where k is a real positive constant.
(b) Find the ground state energy to the first order in
the perturbation theory (10 pts).

(c) Find the ground state energy to the second
order in the perturbation theory (10 pts).

(d) Find the first excited energy levels to the first
order in the perturbation theory (10 pts).

the one-dimensional
proof

of
may be used without

*The standard solution
harmonic oscillator
together with
B 1
" ohmw
ag, = \/Eﬁf’n 1’ GTﬁf’n =Vn+1¢,,

(mwz + ip),
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where w=(;)2,ﬂ(cﬁ) is the annihilation (creation)
operator, ¢, is the n" energy eigenstate of the

one—dimensional harmonic oscillator, and p is the =z
—component momentum operator.

3. A spin—% particle is placed in a time-dependent

magnetic field
E: Bycos (wt)ﬁ?:,

where B, and w are real constants. The spin

operators for z—, y—, and z—components are

_301] ,_Q(O—i) wﬁi(u})
‘9-“_2(10’ ‘Sy_zz'O’ S:=3l0-1)

(a) Find the Hamiltonian in the matrix form assuming
that the gyromagnetic ratio of the particle is 5. (10
pts)

(b) The particle was initially in the spin—up state with
respect to the xz—axis. Find the time—dependent
spinor at time ¢. (10 pts)

value when the
is measured at time t.

(c) Find the expectation z—
component of the spin

Comment on the result. (10 pts)

(d) Find the probability of getting "spin—down" when
the z—component of the spin is measured at time
t. (5 pts)

(e) What is the condition for the magnetic field to
cause a complete flip of the spin in &, at time ¢7

(5 pts)
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1. We consider the photon gas in three dimensions.
Answer the following questions.

(@) The first law of thermodynamics s
dU= TdS— PdV, where U is the average energy, T
is the temperature, & is the entropy, P is the
pressure, and V is the wvolume. Show that the
entropy S and the pressure P can be obtained from

the Helmholtz free energy A= U—-TS by the
relations

__ |24 e f 0

S§= (8?,)}’, P (BV)T‘ (7 pts)

(b) The Helmholtz free energy A of the photon gas
is given by
' V(kgT)

T
in three dimensions. Find the entropy S and the
pressure P of the photon gas. (7 pts)

(c) Find the heat capacity at constant volume, Cy.
(8 pts)

(d) Show that in the adiabatic process the photon

gas exhibits the pressure—volume relation PV'=
constant. Find the value of v. (8 pts)

2. For a particle of mass m in a two—-dimensional
periodic box of area LZ.

(a) Find the density of state, g(E)= d‘Z(EE), where
N(E) is the number of states with energy less than
E. (10 pts)

(b) What is the spatial density of particles, i.e.,

N . . sl o
n= -E; in a two dimensional Fermi—Dirac gas as a

function of temperature and chemical potential p?

(10 pts)

(c) The same question as (b) for bosons. (10 pts)
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1. This is an electrostatic problem with a conducting

sphere and/or a conducting plane.

a) Find the capacitance C, of an isolated conducting

sphere of radius a. (10)

b) A point charge ¢, is at distance d away from an

c)

infinite grounded conducting plane. Find the
surface charge density induced on the plane
using the image method. (10)

If the point charge ¢, in the above problem is

replaced by a charge ¢, at the center of a sphere

(< d), it produces a constant
potential over the surface of the sphere while the
image charge —q, beneath the plane does not.

of radius a

Find the magnitude ¢, and the position of the

second image charge inside the sphere necessary
to cancel the potential due to —g,. (10)

d) The capacitance C between a conducting sphere

and the infinite conducting plane may be found
by successive images placed inside the sphere.
When a << d, a few iteration of successive
images is enough to produce an accurate value

of the capacitance. Find the expression of C

correct to 0((% )3). (10)

&

a)

b)

c)

d)

e)

Let us picture an electron as a uniformly charged
spherical shell, with the charge e¢ and the radius
R, spinning at the angular velocity w. Assume
the spinning direction is in the z—direction.
Find the electric field for inside and
outside the shell. (5)

The potential

a(r)

A(r)=

points

vector is given by

~’t-L~"~'3—(‘u?><?) for a point inside and

1R io

outside,
3r®

(w x7r)for a point

€

ATR*’
Find the total magnetic field for points (r,0)

where o= the surface charge density.

inside and outside the shell. Prove that the field
inside is uniform. Obtain the magnetic dipole
moment from the field outside. (10)

Calculate the total energy contained in the
electromagnetic fields. Express the result in terms
of e, w, R.(10)

Show the total angular momentum contained in
the fields is given by L = ”'—1’68?—"5.

(Hint: angular momentum density
1=erx(ExE)) (10)

Suppose that the electron's spin angular
momentum is entirely attributable to the
electromagnetic fields: L., = h/2. On this

assumption, what is wR? Does this classical
model of an electron make sense? (5)
h=10% J.5

po = 4m X 107 'N/A®
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3. Consider a thin metallic circular loop (radius a)
which is made of pure copper (mass M and
resistance R). At t=0, the loop is released at
0y, so that it falls on its face. After A¢, the loop
comes to rest on the ground.

a) Two physically same loops are prepared; but in ] o/
one, there is a strong applied magnetic field ',«',."
(B'= BOE), the other without any magnetic field. .
How can you discern the two? Why? (10)

b) Considering the coin in an applied magnetic field,
find the expression for the magnetic torque
applied to the loop as a function of the angle 6.
(15)

c) Express the time At which takes for the loop to

fall completely from its initial position of 6, :—:;i.

For simplicity, assume that the magnetic torques
is always in equilibrium with the gravitational

torque induced by — gk. (15)
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1. Consider a particle with mass m and charge e,
moving in three dimensions in an external magnetic

—

field given by a magnetic monopole: B = qm%.
T

a) Write down the Newton's equation of motion. (7)

b) The usual angular momentum is not conserved in this
situation. However, using the equation in a), show
that

d (> % =7 - 7) d (T
— > = — - L
dt {m?" r ) eqru ?"3 . eQ}ﬂ dt ( T )'

Therefore, we now have a new angular momentum,

-+

T=mr X7 — eqm%, that is conserved. (7)

c) Let us take the spherical coordinate r, 8, ¢, aligning 7!

along the positive direction of z axis. Show that the
particle moves along a constant 6 cone. Find the
angle 6. (7)

d) Show that the trajectory r(¢) is given by:

1 o ‘V2 E 82 m-Y—1 . Qm 1
(@) }n (Fee—r ] ﬂmn[( )ﬂﬁb ‘?50)]

(9)

2. A mass m is tied to a massless, thin string of length
L, which is in turn tied to a stationary cylinder. There

is no gravitational force acting in this system. The
string makes a right angle with the radius vector of
the cylinder at the point of contact. At time t=0 an
impulse 7 is delivered to the mass in a direction
perpendicular to the string and perpendicular to the
axis of the cylinder.

a) Find the Lagrangian to describe the motion of m for
t>0, in terms of the coordinate variable in the
figure. (10)

b) Write down the equation of motion and calculate the
time t,, required for the string to wrap completely

around the cylinder. (10)

c) Find the magnitude and direction of the
instantaneous acceleration of m and the
tension in the string as a function of time.
(10)




