자격시험 문제지

과목명 : 고전역학

1. [30 pts] A cylinder of radius R and uniformly distributed mass m is lying on the ground. A rod of length L and uniform mass M is hinged on the ground (rotating freely around it). The rod leans on the cylinder as shown in the Figure, forming an angle θ with the ground. The distance between the hinge and the bottom of the cylinder is $x(<L)$. [Note that, $\tan (\theta / 2)=R / x$.] There are no frictions in this system, and the gravitational acceleration is g. The whole system is initially at rest.

(a) [5 pts] Let us denote by N_{1}, N_{2} the normal force on the cylinder by the ground and by the rod, respectively. Show that $N_{1}-m g=N_{2} \cos \theta$.
(b) [10 pts] Compute the net force F on the cylinder, in terms of N_{2} and θ. Also, compute the torque τ on the rod around the hinge, in terms of N_{2}, θ and other constants introduced above.
(c) [10 pts] Show that F and τ are related to each other, at the initial time, by

$$
F=\frac{2 m R}{M L^{2} \sin ^{2}(\theta / 2)} \tau
$$

(d) [5 pts] Compute N_{2} at the initial time, when $\theta=\frac{\pi}{3}$ using the results from (b) and (c).
2. [30 pts] Consider two interacting charged particles with same mass m . The particles are moving in the xy -plane, perpendicular to a uniform magnetostatic field $\vec{B}=\hat{B z}$ where $\mathrm{B}>0$. Neglect radiation and gravity.
(a) [15 pts] Suppose the charges are identical (q_{1} $=\mathrm{q}_{2}=\mathrm{q}$). Find the equations of motion for centre-of-mass (CM) and relative motions separately. If the charges have opposite sign, show the equations of motion do not separate into equations for CM and relative motions.
(b) [8 pts] Express the equation of motion for relative motion from (a) in terms of plane polar coordination (r, θ), in the case of identical charges. Show the $L_{w} \equiv \mu r^{2}\left(\dot{\theta}+\frac{1}{2} \omega\right)$ is constant $\left(w=\frac{q B}{m}\right)$.
(c) [7 pts] If the equation is rewritten for the effective potential $V_{e}(r)$, show that the motion is always bounded in the presence of a magnetic field.

자격시험 문제지

과목명 :

양자역학

2017. 07. 18 시행

1. [30 pts] Consider monoenergetic beam of spin $1 / 2$ particles of mass m and energy E moving in x direction. The potential energy operator is given by

$$
\begin{gathered}
V(x)=V_{0}-\gamma B_{0} S_{z} \text { for } \mathrm{x}>0 \\
V(x)=0 \text { for } \mathrm{x} \leq 0
\end{gathered}
$$

where $V_{0}>0$ is a positive constant potential, γ is gyromagnetic ratio, $B_{0}>0$ is magnitude of external magnetic field applied in z direction, and S_{z} is the z-direction spin operator.
(a) [4 pts] Write the Hamiltonian for the particles in the $\mathrm{x}>0$ region and sketch the potential energy as a function of x for particles having z-direction spins up and down, respectively.
(b) [4 pts] Suppose that the spin of particles coming from $-\infty$ is in eigenstate of the x-direction spin operator S_{x} with eigenvalue $+\hbar / 2$ and the energy of each particle is $E>V_{0}>0$. Write down the general eigenstate of such an incoming beam considering spatial and spinor parts.
(c) [5 pts] Write down the general solution of transmitted and reflected beams ($E>V_{0}>0$).
(d) [6 pts] What are the boundary conditions at $\mathrm{x}=0$? Using the boundary conditions, write down the equations that must be satisfied by the amplitudes appearing in parts (b) and (c).
(e) [6 pts] If $E=V_{0}>0$, what is the probability of measuring z direction spin angular momentum + $\hbar / 2$ for the transmitted beam?
(f) [5 pts] Now, instead of the incoming beam with the x -direction spin polarization (i.e., eigenstate of S_{x}), if we start with unpolarized incoming beam (but still $E=V_{0}>0$), what is the probability of measuring the z-direction spin angular momentum $+\hbar / 2$ for the transmitted
2. [30 pts] Consider that we have a hydrogen atom. The orbital angular momentum of the electron is $l=1 \quad(p$-state $)$. The total angular momentum operator is defined as the sum of the orbital and spin angular momentum operators: $\mathrm{J}=\mathrm{L}+\mathrm{S}$ where $\mathrm{L}=\mathrm{r} \times \mathrm{p}$. The Pauli spin matrices are given by $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Also, it is known that the time-reversal operator for an electron is given by $T=-i \sigma_{y} K$ where K is the complex-conjugation operator.
(a) [8 pts] What are the possible eigenstates of the total angular momentum operators J^{2} and J_{z} ? In other words, determine all the possible eigenstates of the total (orbital and spin) angular momentum operators of the form $\left|j, m_{j}\right\rangle$. For example, $\quad\left|j=\frac{1}{2}, m_{j}=+\frac{1}{2}\right\rangle \quad$ is one of such eigenstates.
(b) [8 pts] Express the eigenstate $\left|j=\frac{1}{2}, m_{j}=+\frac{1}{2}\right\rangle$ in terms of the eigenstates of S_{z} and L_{z} operators, i.e., $\left|m_{s}, m_{l}\right\rangle$ states. Hints: Start from $\left|j=\frac{3}{2}, m_{j}=+\frac{3}{2}\right\rangle=\left|m_{l}=+1, m_{s}=+\frac{1}{2}\right\rangle$ and apply J_{-}on both sides. By doing this, you will obtain the results for $j=\frac{3}{2}$ states. Then, use the orthonormality condition to obtain the expressions for $j=\frac{1}{2}$ states. You may also use the relations
$J_{ \pm}\left|j, m_{j}\right\rangle=\sqrt{j(j+1)-m_{j}\left(m_{j} \pm 1\right)} \hbar\left|j, m_{j} \pm 1\right\rangle \quad$ and $J_{z}\left|j, m_{j}\right\rangle=m_{j} \hbar\left|j, m_{j}\right\rangle$ without proof.
(c) [5 pts] Prove that $T^{-1}=i \sigma_{y} K$.
(d) [9 pts] Obtain $T L_{i} T^{-1}$ and $T \sigma_{i} T^{-1}(i=x, y, z)$. Note that you need to obtain 6 answers. Each correct answer counts 1.5 pts.

1. [30 pts] A uniform electric field $E_{0} \hat{x}$, perhaps produced by means of a parallel plate capacitor, exists in a dielectric having permittivity ϵ_{a}. With its axis perpendicular to this field, a sufficiently long circular cylindrical dielectric rod [extended along the z (out-of-paper) direction] having permittivity ϵ_{b} and radius a is introduced.

Because the rod is long and the original field is uniform, the problem reduces down to a two-dimensional polar coordinate problem. Let the axis of cylinder be on the z-axis. (ρ, θ, z) is the cylindrical coordinate. We will look for solutions of Laplace equation inside $\left(\phi_{b}(\rho, \theta)\right)$ and outside $\left(\phi_{a}(\rho, \theta)\right)$ of rod subjecting to the boundary conditions
(i) $\phi_{a}=\phi_{b}$ at $\rho=a$,
(ii) $\epsilon_{\mathrm{b}} \frac{\partial \phi_{\mathrm{b}}}{\partial \rho}=\epsilon_{\mathrm{a}} \frac{\partial \phi_{\mathrm{a}}}{\partial \rho} \quad$ at $\rho=\mathrm{a}$, and
(iii) $\phi_{a} \rightarrow-E_{0} x=-E_{0} \rho \cos \theta$ for $\rho \gg a$.
(a) [7 pts] Justify boundary conditions (ii) and (iii). You may use the three boundary conditions in solving the next problems even if you haven't solved (a).
(b) [15 pts] The general form of the potential outside and inside the rod satisfying the boundary conditions is given, respectively, by
$\phi_{a}=-E_{0} \rho \cos \theta+\sum_{k=1}^{\infty} \rho^{-k}\left(C_{k} \cos k \theta+D_{k} \sin k \theta\right)$
and $\phi_{b}=\sum_{k=1}^{\infty} \rho^{k}\left(A_{k} \cos k \theta+B_{k} \sin k \theta\right)$.
Determine the potential and the electric field at points outside and inside the rod, neglecting end effects.
(c) [8 pts] Sketch the electric field lines inside and outside the rod when $\epsilon_{a}>\epsilon_{b}$.
2. [30 pts] The simplest possible spherical electromagnetic wave can be written as

$$
E(r, \theta, \phi, t)=A \frac{\sin \theta}{r}\left[\cos (k r-\omega t)-\frac{1}{k r} \sin (k r-\omega t)\right] \hat{\phi},
$$

where $\omega / k=c$.

(a) [10 pts] Obtain the associated magnetic field B using Faraday's law.
(b) $\left[\begin{array}{ll}10 & \mathrm{pts}\end{array}\right]$ Calculate the Poynting vector $S=\frac{1}{\mu_{0}} E \times B$.
(c) [10 pts] Take the time average of the Poynting vector to get the intensity vector $t=\langle\boldsymbol{S}\rangle$. Discuss about the results, including the r-dependence.
※ You may use the following formula:
$\nabla s=\hat{r} \frac{\partial s}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial s}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial s}{\partial \phi}$
$\nabla \cdot v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
$\nabla \times v=\hat{r} \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta v_{\phi}\right)-\frac{\partial v_{\theta}}{\partial \phi}\right]$
$+\hat{\theta}\left[\frac{1}{r \sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\phi}\right)\right]$

$$
+\hat{\phi} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{\partial v_{r}}{\partial \theta}\right]
$$

※ You may also use the following vacuum Maxwell equation if necessary:
$\nabla \cdot E=0, \nabla \cdot B=0, \frac{\partial B}{\partial t}=-\nabla \times E$,
$\nabla \times B=\frac{1}{c^{2}} \frac{\partial E}{\partial t}$

1. [60 pts] In a gas of free and independent electrons in three-dimensions, the one-electron levels are specified by the wave vector k and spin quantum number s with the energy given by $E(k)=\frac{\hbar^{2} k^{2}}{2 m}$. At zero temperature, the Fermi energy E_{F} can be defined in a way that the levels with $\quad E(k) \leq E_{F} \quad\left(E(k)>E_{F}\right) \quad$ are occupied (unoccupied).
(a) [5 pts] At the temperature T, the energy density ε and the particle number density n can be written as
$\epsilon=\frac{2}{V} \sum_{k} E(k) f(E(k))$ and $n=\frac{2}{V} \sum_{k} f(E(k))$
where $f(E)=\frac{1}{e^{(E-\mu) / k_{B} T}+1}$ is the Fermi-Dirac distribution function with the Boltzmann constant k_{B} and the chemical potential μ. Using the definition of the density of states $g(E)=\frac{2}{V} \sum_{k} \delta(E-E(k))$ show that ε and n can be written as
$\epsilon=\int_{-\infty}^{\infty} d E g(E) E f(E)$ and $n=\int_{-\infty}^{\infty} d E g(E) f(E)$.
(b) $[10 \mathrm{pts}]$ Compute $g(E)$ explicitly and show $g(E)=\frac{m}{\hbar^{2} \pi^{2}} \sqrt{\frac{2 m E}{\hbar^{2}}}=\frac{3}{2} \frac{n}{E_{F}}\left(\frac{E}{E_{F}}\right)^{1 / 2}$.
(c) $[10 \mathrm{pts}]$ In metals, when the temperature T is much smaller than the chemical potential μ, one can perform the above energy integral by using the Sommerfeld expansion, which leads to
$\epsilon=\int_{0}^{\mu} d E g(E) E+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2}\left[\mu g^{\prime}(\mu)+g(\mu)\right]+O\left(T^{4}\right)$
$n=\int_{0}^{\mu} d E g(E)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} g^{\prime}(\mu)+O\left(T^{4}\right)$.
Assuming that the chemical potential μ differs from its $T=0$ value E_{F} by terms of order T^{2}, one can write $\quad \int_{0}^{\mu} d E h(E)=\int_{0}^{E_{F}} d E h(E)+\left(\mu-E_{F}\right) h\left(E_{F}\right)$ where $h(E)$ is an arbitrary function. Applying this formula show that $\mu=E_{F}-\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} \frac{g^{\prime}\left(E_{F}\right)}{g\left(E_{F}\right)}$ and
$\epsilon=\epsilon_{0}+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} g\left(E_{F}\right) \quad$ where ε_{0} is the energy density in the ground state.
(d) [5 pts] Show that the specific heat of the free electron gas is $c_{v}=\frac{\pi^{2}}{2}\left(\frac{k_{B} T}{E_{F}}\right) n k_{B}$.
(e) [10 pts] To compute the heat capacity $C=\gamma T$, the specific heat should be multiplied by the volume of the system. Suppose that a mole of free electron metal contains $Z N_{A}$ conduction electrons (Z is the valence and N_{A} is Avogadro's number). Calculate γ using $\quad R=k_{B} N_{A}=8.314$ joules $/($ mole $K)=1.99 \quad$ calories $/(m o l e \quad K) ~ a n d ~$ $E_{F} / k_{B}=10000 \mathrm{~K}$ and $Z=3$. Compute γ in units of $\mathrm{J} /(\mathrm{mol} \mathrm{K})$ and round up to two significant figures.
(f) [5 pts] In the presence of external magnetic field H, suppose that the energy of an electron with the momentum k whose spin is parallel (antiparallel) to H is given by $E_{+}(k)=E(k)-\mu_{B} H$ $\left[E_{-}(k)=E(k)+\mu_{B} H\right]$. What is the relevant g -factor?
(g) [5 pt] Since the magnetic field induces just a constant shift of single particle energies, one can define the density of states for electrons with the spin parallel (antiparallel) to H as $g_{+}(E)=\frac{1}{2} g\left(E-\mu_{B} H\right)\left(g_{-}(E)=\frac{1}{2} g\left(E+\mu_{B} H\right)\right), \quad$ and the particle density of each species is given by $n_{ \pm}=\int d E g_{ \pm}(E) f(E)$ satisfying $n=n_{+}+n_{-}$. When the Zeeman energy is much smaller than the Fermi energy, one can assume that $g_{ \pm}(E)=\frac{1}{2} g\left(E \pm \mu_{B} H\right)=\frac{1}{2} g(E) \pm \frac{1}{2} \mu_{B} H g^{\prime}(E)$. Using this approximation, find the chemical potential of the system. (Note the the chemical potential is μ when $\mathrm{H}=0$.)
(h) [10 pts] The magnetization density is given by $M=-\mu_{B}\left(n_{+}-n_{-}\right)$. Here one can again assume

$$
g_{ \pm}(E)=\frac{1}{2} g\left(E \pm \mu_{B} H\right)=\frac{1}{2} g(E) \pm \frac{1}{2} \mu_{B} H g^{\prime}(E)
$$

Show that the zero temperature magnetic susceptibility is $\chi=\frac{M}{H}=\mu_{B}^{2} g\left(E_{F}\right)$.

