과목명: 고전역학

2007 . 07. 20 시행

문제 1. (30점)

위의 스프링에 달려 있다. 이때, 균일 자기장 B가 평면에 \cong 따라 매달리어 수직면상에서 움직인다. (a는 양의 상 수직으로 인가되어있고. 스프링 상수는 모두 k이다.

(가) 물체가 스프링의 정지 길이 a에 비해 매우 작은 운동을 할 때, 물체의 라그랑지안 L 을 원좌표 (
ho,arphi)에 대해서 쓰 $^{(
ho)}$ 단진자 질량의 위치 (x_1,z_1) 을 매달린 점의 시오. 이때, 균일 자기장에 의한 벡터 포텐셜x와 단진자의 기운 각도 heta로 표시하라. $\overrightarrow{A}=rac{1}{2}\overrightarrow{B} imes\overrightarrow{r}$ 이고, 포텐셜 에너지 $U_B\!=\!-q\overrightarrow{A}\cdot\overrightarrow{v}$ 이 $|_{(f t)}$ 라그랑지안을 쓰라 다.

(나) 라그랑지 방정식을 구하고, $l=m
ho^2\Bigl(\dot{arphi}+rac{qB}{2m}\Bigr)$ 이 보존됨을 보이시오.

(다) ho방향으로의 힘을 구하시오.

문제 2. (30점)

질량이 m이고 전하가 q인 물체가 그림과 같이 2차원 평면|길이가 l이고, 질량이 m인 단진자가 $z=ax^2$ 인 포물선상 $| \mathsf{d} \mathsf{d} , \mathsf{d} \mathsf{d} |$ 중력가속도, 마찰은 무시하고, 단진자 막대는 질 량이 없는 강체이다.)

(다) 운동량 P_x 와 $P_ heta$ 를 \dot{x} 와 $l\dot{ heta}$ 의 함수로 구하라.

(라) $ax \ll 1$ 인 극한에서 ax=0 로 놓고, 보존되는 운동 량을 K로 놓고, x 변수를 소거하여 heta에 대한 운동방정식 을 구하라. $\cos\theta$ 를 시간의 함수로 구하라.

과목명: 고전역학

2007 . 07. 20 시행

1. (30 points)

A particle of mass m and charge q is linked to springs of spring constant k on a plane as shown in the figure. $|_{ extstyle ex$ A uniform magnetic field B is applied perpendicular to constant and let $ar{g}$ be the gravitational acceleration the plane.

(A) Write Lagrangian of the particle in the circular|(A) Express the coordinate (x_1,z_1) of the pendulum in coordinate (
ho,arphi) for a displacement much smaller than $ext{terms}$ of the point of suspension x and the inclination the spring length a. Here, the magnetic vector potential angle heta.is given by $\overrightarrow{A} = \frac{1}{2} \overrightarrow{B} \times \overrightarrow{r}$ for uniform magnetic field (B) Obtain the Lagrangian.

and the magnetic potential energy is given by (C) Obtain the momentum P_x and $P_ heta$ in terms of $\dot x$ and $U_R = -q \overrightarrow{A} \cdot \overrightarrow{v}$.

(B) Derive Lagrange equation and show $l=m
ho^2\Bigl(\dot{arphi}+rac{qB}{2m}\Bigr)$ is conserved.

(C) Derive the force along ρ .

2. (30 points)

The point of suspension of a simple pendulum of length l and mass m is constrained to move on a constant. The pendulum rod is rigid, massless, and frictionless.)

- $(\iota\dot{\theta}).$
- (D) In the flat limit $(ax \ll 1)$, let ax = 0. Let the conserved momentum be K. Find the equation of motion for θ by removing x variable (reduction to one degree of freedom). Solve the equation to obtain $\cos\theta$ as a function of time.

과목명: 전자기학

2007 . 07. 20 (금) 시행

문제 1 (40점)

소속대학원

아래 그림처럼 반지름이 a이고 높이가 2b인 원통형 영구자석을 고려하자. 이 영구자석의 magnetization \overrightarrow{M} 은 2축 방향으로 균일하며 크기가 M_0 이다. 이 영구자석이 만드는 자기장 (magnetic induction \overrightarrow{B})를 구하고 자 한다.

- (가) Maxwell 방정식으로부터 magnetic field \overrightarrow{H} 는 scalar potential ϕ_M 로부터 구할 수 있음을 보여라. 이 때 effective magnetic charge density ρ_M 은 $\rho_M = -\overrightarrow{\nabla} \cdot \overrightarrow{M}$ 로 주어짐을 보여라.
- (나) (r)의 결과를 이용하여 영구자석의 회전대칭축(r축이라 하자) 상의 임의의 점에서의 ϕ_M 를 구하라.
- (다) z축상의 임의의 점에서의 H 와 B 를 구하고, 그 크기들을 z의 함수로 간단히 스케치하라.
- (라) 영구자석으로부터 멀리 떨어진 임의의 위치 $(r\gg a,b)$ 에서 $\phi_M(r,\theta,\phi)$ 를 $1/r^2$ 항까지 구하고, 그 항에 해당하는 자기 모멘트를 구하라.

문제 2 (40점)

점전하 q가 $\mathbf{r'}$ 에 있을 때 \mathbf{r} 에서의 정전 포텐셜이 $1/|\mathbf{r}-\mathbf{r'}|$ 에 비례하는 것이 아니라 다음과 같이 $1/|\mathbf{r}-\mathbf{r'}|^{1+\varepsilon}$ 에 비례한다고 가정하자 $(\varepsilon>0)$.

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{1+\varepsilon} \frac{q}{|\mathbf{r} - \mathbf{r}'|^{1+\varepsilon}}$$

- (가) 이 경우 점전하 q에 의한 전기장 \mathbf{E} 는 어떻게 되는가?
- (나) 완전한 도체로 이루어지고 내부반경이 a인 구형 껍질의 내부표면에 일정한 표면전하분포 σ_0 가 존재한 다고 가정하자. 이 경우, 구형껍질 도체 내부(r < a)에서 정전 포텐셜이 다음과 같이 표현됨을 보여라.

$$\Phi(r) = \frac{\sigma_0 a}{\epsilon_0} \frac{1}{1 - \epsilon^2} \left[\frac{(a+r)^{1-\epsilon} - (a-r)^{1-\epsilon}}{2r} \right]$$

여기서 $r=|\mathbf{r}|$ 이다.

- (다) 일정한 정전압 V_0 가 구형껍질에 가하여졌을 때 구껍질 내부표면에 유도되는 σ_0 와 구껍질 중심에서의 포텐셜을 각각 구하라.
- (라) 현재 Cavendish형태의 실험에서 구한 ε 의 극한치는 3×10^{-16} 정도이다. 만약 $10 \mathrm{kV}$ 의 전압이 구껍질에 가하여 전다면 구껍질과 중심사이의 전압차 ΔV 는 얼마인지 구하라. 단, ε 이 1 보다 매우 작다는 근사를 사용할 수 있으며 $2^{\varepsilon} \simeq 1 + \epsilon \log_{\mathrm{e}} 2 \simeq 1 + 0.7 \varepsilon$ 로 근사하여도 무방하다.

소속대학원 물리학부 학번 성명 감독교수 학 인

물리학부 석사과정 자격시험

과목명: 전자기학

2007 . 07. 20 (금) 시행

문제 3 (40점)

원점에 고정된 양전하 q 를 중심으로 하여 음전하 -q가 반지름 a를 갖고 원운동 하고 있다. 다음 물음에 답하라.

- (r) 이 계의 전기 쌍극자 모멘트 p(t) 를 시간의 함수로 구하라.
- (나) 이 계로부터 먼 거리 $r(r\gg a)$ 만큼 떨어진 곳에 서의 벡터 포텐샬

$$\mathbf{A}(\mathbf{r},t) \simeq \frac{\mu_0}{4\pi r} \dot{\mathbf{p}}(t - r/c)$$

를 구하라.

- (다) 위의 벡터 포텐샬로부터 r이 큰 경우 자기장 $\mathbf{B}(\mathbf{r},t)$ 를 구하고 $|\mathbf{B}|^2$ 의 시간 평균을 구하라.
- (라) 이때 단위 시간당 발산되는 total radiation energy를 구하라.

과목명: 전자기학

2007 . 07. 20 (금) 시행

Problem 1 (40points)

Consider a cylindrical permanent magnet with radius a and height 2b as shown below. The magnetization \overrightarrow{M} of this magnet is directed along z axis with a uniform magnitude M_0 . We want to find the magnetic induction \overrightarrow{B} generated by this magnet.

- (a) From Maxwell equations, show that the magnetic field \overrightarrow{H} can be obtained from a scalar potential ϕ_M Show that we can assume an effective magnetic charge density ρ_M which is given by $\rho_M = -\overrightarrow{\nabla} \cdot \overrightarrow{M}$.
- (b) By using the results in (a), calculate ϕ_M along the rotational symmetric axis (let us call it z axis) of the cylindrical magnet.
- (c) Find \overrightarrow{H} and \overrightarrow{B} along z axis, and sketch your results in a simple plot.
- (d) Find the scalar potential $\phi_M(r,\theta,\phi)$ at a location far from the magnet $(r\gg a,b)$ up to $1/r^2$ order, and find the magnetic moment associated with that order.

Problem 2 (40points)

Let us imagine that we are living in a world where the electric potential at \mathbf{r} due to a point charge q located at $\mathbf{r'}$ is proportional to $1/|\mathbf{r}-\mathbf{r'}|^{1+\varepsilon}$, not to $1/|\mathbf{r}-\mathbf{r'}|$ as usual $(\varepsilon>0)$. Specifically, the electric potential is given by

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{1+\varepsilon} \frac{q}{|\mathbf{r} - \mathbf{r}'|^{1+\varepsilon}}$$

- (a) What is the electric field E from a point charge q in this new world?
- (b) Consider a spherical shell made of perfect conductor whose inner radius is a and give a uniform surface charge density of σ_0 on the inner surface. Show that the potential inside the spherical shell (r < a) is given as

$$\Phi(r) = rac{\sigma_0 a}{\epsilon_0} rac{1}{1-arepsilon^2} \left[rac{(a+r)^{1-arepsilon} - (a-r)^{1-arepsilon}}{2r}
ight]$$

where $r = |\mathbf{r}|$.

- (c) When a constant potential V_0 has been applied on the spherical shell, what are the charge density σ_0 induced on the inner surface of the shell and the potential at the center of the spherical shell, respectively?
- (d) The current limit on ε from Cavendish type measurement is about 3×10^{-16} . If we apply a voltage of $10\mathrm{kV}$ on the spherical shell, what would be the potential difference ΔV between the spherical shell and the center? You can use an approximation that ε is small compared to 1 and you might find it useful to know that $2^\varepsilon \simeq 1 + \varepsilon \log_e 2 \simeq 1 + 0.7\varepsilon$.

소속대학원 물리학부 학번 성명 감독교수 학 인

물리학부 석사과정 자격시험

과목명: 전자기학

2007 . 07. 20 (금) 시행

Problem 3 (40points)

A negative charge -q is rotating, with a radius a, around a positive charge q fixed at the origin. Answer the following questions.

- (a) Obtain the time-dependent dipole moment $\mathbf{p}(t)$ of this system.
- (b) The vector potential $\mathbf{A}(\mathbf{r},t)$ at a large distance $r(r\gg a)$ away from this dipole is given as

$$\mathbf{A}(\mathbf{r},t) \simeq \frac{\mu_0}{4\pi r} \dot{\mathbf{p}}(t-r/c)$$
.

- (c) Obtain the explicit expression for the magnetic induction ${\bf B}$ at a large enough distance from the dipole $r(r\gg a)$ and also the time-averaged $|{\bf B}|^2$.
- (d) Obtain the total radiation energy per unit time.

과목명:양자역학

2007 . 07. 20 시행

문제 1. (40점)

다음 식에 주어진 1차원 퍼텐셜 V(x)의 공간에 질량 $m ert_J$ 는 각운동량의 벡터 연산자(angular 의 입자가 있다.

$$V(x) = \begin{cases} \infty, & \text{for } x < 0 \\ -V_0, & \text{for } 0 \le x \le a \\ 0, & \text{for } x \ge a \end{cases}$$

- (가) 가장 낮은 에너지 속박상태의 파동함수의 모양을 그 려보라.
- (나) 속박상태의 에너지 준위를 결정하는 관계식을 $\stackrel{
 ightharpoonup}{A}$ 는 벡터 연산자(vector operator)이고 다음의 관계식을 $z\equiv la\equiv rac{a}{k}\sqrt{2m(E+V_0)}$ 과 $z_0\equiv rac{a}{k}\sqrt{2m\,V_0}$ 로 표시하 만족한다. 라.
- (다) 단 한 개의 속박 상태만 존재하는 조건을 구하라.
- (라) 무한대 퍼텐셜 우물이 되는 경우, 즉, Ⅴ,→∞, 속박 상태의 조건을 구하라.
- (마) $V_0 = 32 \hbar^2/ma^2$ 일 때, 속박상태의 수를 구하라.
- (바) $V_0 = 32 \hbar^2/ma^2$ 일 때, 속박상태 중 가장 높은 에너 지룔 갖는 상태의 입자가 퍼텐셜 우물 밖에서, 즉. (x>a) 에서 발견될 확률을 구해 z와 z_0 로 답하라.

문제 2. (40점)

momentum operator)이고 다음의 관계식을 만족한다.

$$[J_i\,,\,J_i]=i\hbar\,\epsilon_{ijk}J_k\,\,,\qquad J_i^\dagger=J_i$$

 $\mid jm>$ 은 J^2 와 J_3 의 eigenstate 이며 다음의 관계식을 만족한다.

$$J^{2}|jm\rangle = \hbar^{2}j(j+1)|jm\rangle$$

$$J_{3}|jm\rangle = \hbar m|jm\rangle$$

$$[J_i\,,\;A_j]=i\hbar\;\epsilon_{ijk}\,A_k$$

- (가) 다음의 관계식들이 성립함을 보여라.
 - $< j'm' | A_3 | jm > 0$ unless m' = m.
 - $< j'm' | A_+ | jm > = 0$ unless m' = m+1.
 - $< j'm' | A_- | jm > = 0$ unless m' = m-1.
 - 여기서 $A_{\pm} = A_1 \pm i A_2$.
- (나) 다음의 관계식들이 성립함을 보여라.

$$\vec{J} \cdot \vec{A} = \vec{A} \cdot \vec{J}$$

$$[J_i, \overrightarrow{A} \cdot \overrightarrow{J}] = 0$$

$$[J^2, \overrightarrow{A} \cdot \overrightarrow{J}] = 0$$

(다) 다음의 관계식들이 성립함을 보여라.

$$\langle j'm' | J_i(\vec{J} \cdot \vec{A}) | jm \rangle = 0$$
 unless $j' = j$.

(라) 파동함수 $|\psi>$ 를 다음과 같이 회전변환한다.

$$|\psi'>=\exp(rac{iJ_3 heta}{\hbar})\,|\psi>$$

이때 각운동량의 기대치를 다음과 같이 정의한다.

$$\langle J_i \rangle = \langle \psi | J_i | \psi \rangle$$

$$< J_i'> = <\psi'|J_i|\psi'>$$

이때 $\langle J_i \rangle$ 와 $\langle J_i' \rangle$ 사이의 관계식은 다음과 같다.

$$\langle \vec{J}' \rangle = D(\theta) \langle \vec{J} \rangle$$

이때 $D(\theta)$ 행렬(matrix)을 구하라.

과목명: 양자역학

2007 . 07. 20 시행

문제 3. (40점)

2차원 평면에서 운동하는 질량 m, 전하 q (>0)의 입자를 생각하라. 이 입자는 원점에 놓인 탄성계수 k, 길이 r_0 의 (질량이 없는) 막대에 연결되어 있다.

(가) (r,ϕ) 극좌표계에서 이 입자계의 라그랑지안을 적으면 다음과 같다.

$$L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\phi}^2 - \frac{1}{2}k(r-r_0)^2.$$

이 입자계의 해밀토니안 H_0 과 고전역학적 운동방정식을 구하라.

(나) 이 입자계의 양자역학적 상태를 고려할 때, 막대의 길이 r_0 에 비해 입자의 r-방향의 운동의 길이 크기 ξ_0 가 매우 작다고 가정하자. 다시 말해서 $\omega_0=\sqrt{k/m}$ 라 할

때, $\xi_0 = \sqrt{rac{\hbar}{m \omega_0}} \ll r_0$ 이다. 이 입자계의 양자역학적 해 의 고유치가

$$\epsilon_{n_1,n_2}^{(0)} = A\left(n_1 + \frac{1}{2}\right) + B n_2^2,$$

으로 근사될 수 있음을 보이고, (단, n_1 은 자연수, n_2 는 정수이다.) 이 식의 계수 A와 B를 ω_0 , m, r_0 , \hbar 으로 나타내라.

(다) 일정한 외부 전기장 $\stackrel{
ightarrow}{E_0}$ 가 x-축 방향으로 가해진 경우, 이 입자계에 작용하는 섭동항 H_1 을 고려해야 한다.

$$H_1 = -\overrightarrow{qE_0} \cdot \overrightarrow{r} = -\overrightarrow{qE_0} r \cos \phi.$$

 $\xi_0/r_0{
ightarrow}0$ 극한을 고려하여, 이 입자의 바닥상태 에너지 고유치 $\epsilon_{0,0}^{(0)}$ 에 대한 섭동에너지 $\epsilon_{0,0}^{(1)}$ 을 $\lambda=qE_0r_0$ 의 2차항 까지 구하라.

(라) 위의 (다) 문항에서, 전기장 E_0 의 크기가 아주 커져 서 $\lambda\gg B$ 조건을 만족한다면, 기존의

 $|n_1=0,n_2=0>$ 상태는 더 이상 바닥상태가 될 수 없다. $\xi_0/r_0=0$ 라 가정하고, H_0+H_1 에 대한 새 바닥상태에 대해 간략히 기술하시오.

과목명:양자역학

2007 . 07. 20 시행

1. (40 points)

potential

$$V(x) = \begin{cases} \infty, & \text{for } x < 0 \\ -V_0, & \text{for } 0 \le x \le a \\ 0, & \text{for } x \ge a \end{cases}$$

- (a) Sketch the wave function for the lowest bound J_3 . state.
- (b) Find the relation between

 $z\equiv la\equiv rac{a}{\hbar}\sqrt{2m(E+V_0)}$ and $z_0\equiv rac{a}{\hbar}\sqrt{2m\,V_0}$ which Consider a vector operator \overrightarrow{A} , which satisfies the determines the energy level of the bound states.

- (c) Find the condition for existence of at least one bound state.
- (d) Find the condition for the bound states when the problem approaches to the infinite square potential well, i.e., $V_0 \rightarrow \infty$.
- (e) When $V_0 = 32 \, \hbar^2/ma^2$, how many bound states are there?
- (f) When $V_0 = 32 \hbar^2/ma^2$, what is the probability that the particle in the highest-energy bound state would be found outside the well (x > a)? Express the answer in terms of z and z_0 .

2. (40 points)

A particle of mass m is in a one-dimensional Let \vec{J} be the angular momentum vector operator which satisfy the following relationship:

$$[J_i\,,\;J_j]=i\hbar\,\epsilon_{ijk}\,J_k$$
 , $J_i^\dagger\!=J_i$

Let $|jm\rangle$ be a simultaneous eigenstate of J^2 and

$$J^{2} | jm > = \hbar^{2} j(j+1) | jm >$$
 $J_{3} | jm > = \hbar m | jm >$

following commutation relation:

$$[J_i, A_j] = i\hbar \; \epsilon_{iik} A_k$$

(a) Show that the following relationships are valid:

$$< j'm' | A_3 | jm > = 0$$
 unless $m' = m$.

$$< j'm' | A_+ | jm > = 0$$
 unless $m' = m+1$.

$$< j'm' | A_{-} | jm > = 0$$
 unless $m' = m-1$.

where $A_{+}=A_{1}\pm iA_{2}$.

(b) Show that the following relationships are valid:

$$J \cdot A = A \cdot J$$

$$[J_i, A \cdot J] = 0$$

$$[J^2\,,\,A\,\cdot\,J]=0$$

(c) Show that the following claim is valid:

$$< j'm' | J_i(J \cdot A) | jm > 0$$
 unless $j' = j$.

(d) Consider the following transformation of the wave function $|\psi\rangle$.

$$|\psi'>=\exp(rac{iJ_3 heta}{\hbar})|\psi>$$

The expectation values of the angular momentum vectors are defined as

$$< J_i> = <\psi |\, J_i\, |\, \psi>$$

$$< J_i'> \ = \ <\psi' | J_i | \psi'>$$

Then the relationship between $\langle J_i \rangle$ and $\langle J_i' \rangle$ is

$$<\vec{J}'>=D(\theta)<\vec{J}>$$

Obtain the $D(\theta)$ matrix.

과목명: 양자역학

2007 . 07. 20 시행

3. (40 points)

Consider a particle with mass m and charge q (>0), attached to a (massless) rod of length r_0 with spring constant k at the origin, moving in a two-dimensional plane.

(a) In the cylindrical coordinate of $(r,\phi),$ we can write down the Lagrangian as

$$L = \frac{1}{2} \dot{mr^2} + \frac{1}{2} mr^2 \dot{\phi^2} - \frac{1}{2} k(r - r_0)^2 \, . \label{eq:L}$$

Find the Hamiltonian H_0 and the *classical* equation of motion.

(b) Now, turning it to quantum mechanics, suppose that the length scale, ξ_0 , of the radial degree of freedom is much smaller than the rod length, r_0 :

$$\xi_0 = \sqrt{rac{\hbar}{m \omega_0}} \ll r_0 \; ext{ where } \; \omega_0 = \sqrt{k/m} \, .$$

Show that the eigenvalues can be approximated as

$$\epsilon_{n_1,n_2}^{(0)} = A \left(n_1 + \frac{1}{2} \right) + B n_2^2,$$

where n_1 is a natural number and n_2 an integer, and find the coefficients A and B in terms of $\omega_0,\ m,\ r_0,$ and $\hbar.$

(c) When a constant electronic field \overrightarrow{E}_0 is applied along the x-axis within the plane, we need to consider the perturbing term

$$H_1 = -\overrightarrow{qE_0} \cdot \overrightarrow{r} = -\overrightarrow{qE_0} r \cos \phi.$$

In the limit of $\xi_0/r_0
ightharpoonup 0$, calculate the energy correction $\epsilon_{0,0}^{(1)}$ up to the second order in $\lambda=qE_0r_0$ to the ground state $\epsilon_{0,0}^{(0)}$.

(d) In (c), if the electric field E_0 becomes large so that $\lambda\gg B$, then the $|n_1=0,n_2=0>$ state can no longer be a ground state.

Assuming that $\xi_0/r_0=0$, describe briefly about the new ground state of H_0+H_1 .

과목명: 통계역학

2007 . 07. 20 시행

- 1. (30점) 상호작용하지 않는 N 개의 질량 m인 (구분 가능한) 고전적 알갱이들이 퍼텐셜 $U(r)=(1/2)Kr^2$ 에서 움직이고 있는 온도 T의 계를 생각하자.
- (가) 계의 분배함수(partition function)을 구하라.
- (나) 계의 내부에너지 E를 구하고, 그 결과를 등분배 정리(equipartition theorem)의 관점에서 논의하라.
- (다) 엔트로피 S(E,N) 및 화학퍼텐설(chemical potential) $\mu\left(T,N\right)$ 를 계산하라.
- (라) 원점으로부터 알갱이들의 제곱평균제곱근(rms) 거리는 얼마인가?

참고:

$$1. \qquad \int_{-\infty}^{\infty} dx e^{-ax^2} = \sqrt{\frac{\pi}{a}}$$

2. (30점) 두 개의 서로 다른 원자로 이루어진, 상호작 요하지 않는 분자들 N 개를 생각하자. 각 분자들의 잘 량중심은 하나의 격자점에 고정되어 있다. 분자들은 자신의 질량중심 주위로 회전하며, 이는 해밀토니안

$$H=\frac{L^2}{2I}$$

으로 표시할 수 있다. 여기서 I는 분자 하나의 회전관성, L은 각운동량이다.

- (가) 이 계가 고전적이라고 가정하고, 온도 T 에서 분 배항수(partition function)와 분자당 평균에너지를 구하여라.
- (나) 이제부터는 이 계를 양자역학적으로 기술한다. 온도가 높은 극한 $[T\gg \hbar^2/(2Ik_B)]$ 에서 분배함수와 분자당 평균에너지를 구하여라. 그 결과가 (r)에서 얻은고전적 결과와 같음을 보여라.
- (다) 온도가 낮은 극한 $[T\ll \hbar^2/(2Ik_B)]$ 에서 분자당 평균 에너지를 제일 큰 항(leading order)까지 계산하여라.
- (라) 분자를 이루는 두 원자가 스핀 0의 꼭같은 보존 (identical boson)일 때, (다)의 계산을 반복하여라.

참고:

1.
$$L^2 = p_\theta^2 + \frac{p_\phi^2}{\sin^2\!\theta}$$

(θ 와 ϕ 는 각각 구면좌표계의 극각(polar angle), 방위각(azimuthal angle)이고, p_a 는 $a (= \theta, \phi)$ 에 대응되는 운동량이다.)

2. \mathbf{L}^2 의 고유값은 $\hbar^2 l(l+1)$, $l=0,1,2,\cdots$ 으로 주어진다.

Subjetct: Statistical Mechanics

- 1. (30 points) Consider a system of N non-interacting (distinguishable) classical particles of mass m, all moving in the potential $U({\bf r}\,)=(1/2)Kr^2$ at temperature T.
- (a) Compute the partition function of the system.
- (b) Evaluate the internal energy ${\cal E}$ of the system and discuss the result in view of the equipartition theorem.
- (c) Compute the entropy S(E,N) and the chemical potential μ (T,N).
- (d) What is the root-mean-square distance of a particle from the origin?

2. (30 points) We consider N non-interacting molecules composed of two different atoms. The center of mass of each molecule is fixed on a lattice point. Each molecule rotates around its center of mass, which is governed by the Hamiltonian

Date: 2007 . 07. 20

$$H=\frac{L^2}{2I}$$

where I is the rotational inertia of a molecule and \boldsymbol{L} is an angular momentum.

- (a) Assume that the system is classical and find the partition function of the system and the average energy per molecule at temperature T.
- (b) Henceforth we treat the system fully quantum-mechanically Evaluate the partition function and the average energy per molecule in the high-temperature limit $[T\gg \hbar^2/(2Ik_B)]$. Show that the results reduce to the classical ones obtained in (a).
- (c) In the low-temperature limit [$T\ll \hbar^2/(2Ik_B)$] calculate the average energy per molecule up to the leading order.
- (d) In case that two atoms in a molecule are identical bosons with spin 0, repeat the calculation in (c).

Note:

$$1. \qquad \int_{-\infty}^{\infty} dx e^{-ax^2} = \sqrt{\frac{\pi}{a}}$$

$$2. \qquad L^2 = p_\theta^2 + \frac{p_\phi^2}{\sin^2 \theta}$$

(θ and ϕ are the polar and the azimuthal angles in the spherical coordinates, respectively, and p_a denotes the momentum corresponding to the coordinate $a (= \theta, \phi)$)

3. Eigenvalues of L^2 are $\hbar^2 l (l+1)$ with $l=0,1,2,\cdots$.