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1. (30 points)

A particle of mass m and charge ¢ is linked to springs
of spring constant k on a plane as shown in the figure.

A uniform magnetic field B is applied perpendicular to
the plane.

(A) Write Lagrangian of the particle in the circular
coordinate (p, ) for a displacement much smaller than

the spring length @. Here, the magnetic vector potential

is given by A= %FX F for uniform magnestic field

and the magnetic potential energy is given by
UBZ“' JT‘ 'lT .

(B) Derive Lagrange equation and show that
I=mp* (Lp + _9‘_273;) is conserved.

(C) Derive the force along p.

2. {30 points)

The point of suspension of a simple pendulum of
length { and mass m is constrained to move on a

parabola z = qz? in the vertical plane. (a is a positive
constant and let g be the gravitational acceleration

constant. The pendulum rod is rigid, massless, and
frictionless.)

(A} Express the coordinate (z,,z) of the pendulum in
terms of the point of suspension z and the inclination
angle 6.

(B) Obtain the Lagrangian.

(C) Obtain the momentum P, and P, in terms of z and
18).

(D) In the flat limit (ez € 1), let axz=0. Let the
conserved momentum be K. Find the equation of
motion for § by removing z variable (reduction to one
degree of freedom). Solve the eguation to obtain
cosf as a function of time.




ssmod| BISE | ow 89 i rl
SEd|=ts AHAE AF-FHAIS
= : ™IS 2007 . 07. 20 (=) Al %Y

£4 1 (403) A4 2 (403)

ofg) ZEAY WA Fo] g0l Fo)7F 26%] UFH A | W ¢7F o UE W relMe] AR EdE
FAME nHBAL o] ATAAHY magnetization M | /=1l o wlEstE el ok} thEa o
e & wgoeg Fdsy Ars Mt o) GFa | /e o vl @dn ZHA A (> 0).

o] gt= 27]% (magnetic induction B)E T3t =t 2 g
dmeg 1+e |p—p/|tte

A o,
" . h o] A% HAs) g 93 #A7F Ex %A H
+(~6, ¢) =717
P S-F Y2 o|Folxm YRukde]l o) TF

A7) WREDe AFP EVVAEE o7} A
ga AR o A%, EEA EA WR(r<a)l
A AR TAMol theal go RAYE neleh

o 1 la+r) " =(a—r) "
ol = € 1-—¢ 2r
o714 r=r] o]t},

(th 443 AAS% Vv 7F FEE A Zletigs o
|38 anaed sEmAE o0 FAE FA049
(7B Maxwell FAHoZRE magnetic field HE | gyae 2zt 7aa

scalar potential ¢, ZH¥H T& F Y52 B2k o] | (a]) dA) Cavendishd€le] A o)A 7ot go] 2akx]
o) effective magnetic charge density py < | = 3x 10" Aol wreF 10kVE] H<to] A A

| ¢

pu=—V - M2 Fo]P& noja}, Fhstel AThd FAAst FAAblY AGA AveE o
(W) Fhe] ATE o)&ste ATAAY FAWRAER(, | LA FEE |, 0] 1 EW w9 HArpe 2AE A}
ol 3kah) Aol 499 HeAM2 ¢, T3t 43 F glon 2 =1+4dog2=1+07:2 TABIYE

(@) 2232 Qe PolMe] H & B & e, o | T
A71EE 29 B52 9 2AA s,

@) dPAMozRY Wy w=old e X
(r> ab)NA ¢,(r0,0) T 1/ F7A Fsti, 2
ol AAFsHe A RdEE Pat




k>
»
=
Jo
o
Mo
L
1
-0
ot

X

Eps
e rol)

W=s9 : d21Y

2007 . 07. 20 (2) Aol

A 3 (403)

o] nHA S}
7} BIRE o5 a3l 9
a2}

(7h °] Alg] A7) FFA EWE pit) & Al g
T2 ke

() o) A2EH A A rir>a) TF Foid 2o
Ao ¥y EH

Lo

Al g) = 20 3n dd

5
mp
€ Tatel

(th 99 9y ¥dEa e ro] & A A
B(r,t) € v&ta B 9 Az H¢ & FileEl

(&) oW =9 AlFd TAlHEE  total radiation
energys 7ot}




g
JB
=
je,
e

49

n
!
re 4>

el

Jo oy

W=y : ™MAI| S

AQALDEE KEAlE

2007 . 07. 20 (Z) Al™H

Problem 1 (40points)

Consider a cylindrical permanent magnet with

radius a and height 2b as shown below. The
magnetization M of this magnet is directed along

z axis with a uniform magnitude Af,. We want to

find the magnetic induction B generated by this

magnet.

. {?’, 6, ¢)

(&) From Maxwell equations, show that the

field ff can be obtained from a scalar

magnetic
potential ¢,, Show that we can assume an
effective magnetic charge density p,, which is

given by pM=*"€ ¢ ﬁ

(b) By using the results in (a), calculate ¢, along
the rotational symmetric axis (let us call it z axis)
of the cylindrical magnet.

(c¢) Find H and B along z axis, and sketch your
results in a simple plot.

(d) Find the Bas(r,6,0)

location far from the magnet (r>» a,b) up to

at a

1/7‘2

order, and find the magnetic moment associaled
with that order.

scalar potential

Problem 2 (40points)

Let us imagine that we are living in a world

where the electric potential at r due to a point

’

charge ¢ located at r 1s proportional to
1/lt=2'*T¢ ., not to 1/lr—1'l (e>0).

Specifically, the electric potential is given by

as wusual

i 1 g
471'60 1+e¢ ‘I— r’|1+“"

&(1)

(a) What
charge ¢ in this new world?

is the electric field E from a point

(b) Consider a spherical shell made of perfect

conductor whose inner radius is a and give a

uniform surface charge density of o, on the inner
Show that the

spherical shell (r< a) is given as

surface. potential inside the

AT | (a+r) " —(a—r)—°

QS(T) - €y 1_82 2r

where r=1z| .

(c) When a constant potential V, has been applied
shell,
density o, induced on the inner surface of the
shell
spherical shell, respectively?

on the spherical what are the charge

and the potential at the center of the
(d) The current limit on & from Cavendish type
If we apply a
shell, what

would be the potential difference AV between the

measurement is about 3x10 ¢
voltage of 10kV on the spherical

spherical shell and the center? You can use an
approximation that ¢ is small compared to 1 and
you find it that

2" =1+¢clog,2=1+0.Te.

might useful to know
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Problem 3 (40points)

A negative charge —g¢ is rotating, with a radius a,
around a positive charge g fixed at the origin.
Answer the following questions.
(a) Obtain the  time-dependent dipole moment
p(t) of this system.
(b) The  vector potential A(r,t) at a large
distance r(r» a) away from this dipole is given
as

Ale,t) = plt—r/o).
(c) Obtain the explicit  expression for the
magnetic induction B at a large enough distance
from the dipole #(r»a) and also the
time-averaged [BI* .
(d) Obtain the total radiation cnergy per unit

time.
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1. (40 points)

A particle of mass m is in a one—-dimensional
potential
co, forz <0
Viz)=1—V, for0<z<a
0, forz > a

{a) Sketch the wave function for the lowest bound
state.
{b) Find the relation between

 VImET V) and 2= %1/2701 V, which

determines the energy level of the bound states.

{c) Find the condition for existence of at least cne
bound state.

(d) Find the condition for the bound states when the
problem approaches to the infinite square potential
well,

(e) When V,=32/%/ma’,
there?

(f) When V,=32h*/ma®, what is the probability that
the particle in the highest—energy bound state would

be found outside the well (z>a)? Express the
answer in terms of z and z;.

a

la

2z

[/n—roo,

how many bound states are

2. (40 points)

Let :} be the angular momentum vector operator
which satisfy the following relationship:

[, S =ikeydi . K=
Let | jm > be a simultaneous eigenstate of J* and
Iy
= K25+ 1) jm >
= tim|jm >

T jm >
Jy | jm >
Consider a vector operator Z, which satisfies the
following commutation relation:
[ A;] = ifi e, Ay
{a) Show that the following relationships are valid:
<jm'| Ayljm > = 0 unless m' = m.

<jim'lA, |jm> =0 unless m'= m+1.

<jim'|A_|jm> =0 unless m'=m—1.
where 4,= 4, +iAd,.
(o) Show that the following relationships are valid:
J-A=A-J
[/, A-Jl=0
[?,A4-J]=0

{c) Show that the following claim is valid:
<jim'|J(J-A)jm>=0 unless j =3j.

(d) Consider the following transformation of the wave

function | >.

1450
9> = exp(— ) 1y >
The expectation values of the angular momentum
vectors are defined as
<> =<plly>
<J' > =<y Ll >
Then the relationship between < J,> and < J/ > is
<J'>=D@)<J>
Obtain the D(g) matrix.
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3. (40 points)

Consider a particle with mass m and charge ¢ (> 0),
attached to a (massless) rod of length r, with spring

constant & at the origin, moving in a two-dimensional
plane.

{(a) In the cylindrical coordinate of (r,¢), we can
write down the Lagrangian as

L= %m;2+ %mrzq;Q-— %k(r— o).

Find the Hamiltonian H, and the classical equation of
maotion.

(b) Now, turning it to quantum mechanics, suppose
that the length scale, ¢, of the radial degree of

freedom is much smaller than the rod length, ry:

£ = 1/ - < ry where wy, = vk/m .
mwy

Show that the eigenvalues can be approximated as
1
2
where n, is a natural number and n, an integer, and

EE;(:,)M:A(M‘*‘ )+Bn§.

find the coefficients 4 and B in terms of w,. m. rg,
and #.

(c} When a constant electronic field EO is applied

along the z—axis within the plane, we need to
consider the perturbing term

H, =— qEU J ;=—qE‘0'rcos¢.
In the limit of ¢&/r,—0, calculate the energy
correction €§}) up to the second order in A= gEyr, to
the ground state .
(d) In (¢), /if the electric field E, becomes large so
that A» B, then the I|n, =0,n,=0> state can no
longer be a ground state.
Assuming that &/r, =0, describe briefly about the
new ground state of Hy+ H,.
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1. (30 points) Consider a system of & | 2. (30 points) We consider N non-interacting
non-interacting (distinguishable) classical particles | molecules composed of two different atoms. The
of mass m, all moving in the potential | center of mass of each molecule is fixed on a
lattice point. Each molecule rotates around its
center of mass, which is governed by the
Hamiltonian

U(r)=(1/2)Kr at temperature T.

(a) Compute the partition function of the system. 12
=37

(b} Evaluate the internal energy E of the system | where I is the rotational inertia of a molecule and
and discuss the result in view of the equipartition | £ is an angular momentum.

theorem.

H

(a) Assume that the system is classical and find
{c) Compute the entropy S{(&N) and the | the partition function of the system and the
chemical potential u (7, N). average energy per molecule at temperature 7°.

(b) Henceforth we treat the system fully
guantum-mechanically  Evaluate the  partition
function and the average energy per molecule in
the high—temperature limit [7> K*/(2Ik;)]. Show

that the results reduce to the classical ones
obtained in (a).
(¢) In the low-temperature limit [T < h?/(21kg)]

calculate the average energy per molecule up to
the leading order.

(d) In case that two atoms in a molecule are
identical bosons with spin 0, repeat the calculation
in (c).

{d) What is the root—-mean-square distance of a
particle from the origin?

Note:
1. / d’.'ze_”‘zz =,/
. \/ a
2
2. L'=p+-ti
sin“d

( & and ¢ are the polar and the azimuthal angles in the spherical coordinates, respectively, and p,

denotes the momentum corresponding to the coordinate a (=6,¢) )

3. Eigenvalues of L? are B2 (14 1) with [ =0,1,2,---.
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