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1. (50 pts) Consider a spring with spring con-

stant k and a length l.

a) (7 pts) Find the Lagrangian L and the

Lagrange’s equation of motion if the

spring oscillates as a simple harmonic

oscillator with point particle (mass m).

Find a solution of the equation of mo-

tion and a frequency of the oscillator.

Now think a thin bar of length L and mass

M with uniform density. This bar is sup-

ported by the spring at the corner shown

in the Figure. The springs are confined so

that they can move only vertically.

b) (12 pts) Determine the Lagrangian for

small amplitudes and the Lagrange’s

equation of motion.

c) (13 pts) Find the normal modes of vi-

bration and their frequencies.

Extend this bar to a rectangular plate with

same mass M (length and width are L). The

spring supports the plate at each of corners.

Same as above problems, the spring moves

only in the vertical direction.

d) (18 pts) Find the normal modes and

frequencies for small amplitude oscil-

lations (set up the perpendicular di-

rection of the plate as y axis and trans-

verse axes of the plate as x and z axes.

Angle of rotation about the z-axis be

q).



åç�

Y–
<¨YÄ Yà 1Ö

⇣≈P⇠

U x
(x)

Subject : Classical Mechanics 2016. 6. 24.

2. (50 pts) Consider a one dimensional chain

of N identical balls of mass m connected

by identical springs of spring constant K

(See Figure 1). The equilibrium distance

between the adjacent balls is a. The total

length of the chain L = Na. The small

displacements of the balls along the chain

from the equilibrium positions are denoted

by ul.

a) (10 pts) Find the equation of motion

for lth ball and solve the equation of

motion using a trial function ul =

Aei(kla�wt) (Find the dispersion rela-

tion w(k)).

b) (5 pts) Assuming a ⌧ L, show that

the equation of motion from (a) can be

written as a wave equation.

c) (5 pts) Using the boundary condition,

uN = u0, find the possible values of k

and plot w vs. k graph.

Now consider a one dimensional chain of

balls in which balls of two different masses

alternate (See Figure 2).

d) (15 pts) Find the two simultaneous

equations of motions for ul
1 and ul

2.

Sove the equation to find w(k). (Hint:

use trial function ul
j = Ajei(kla�wt).)

e) (8 pts) Find the expression of w(k) and

A1, A2 for small values of k.

f) (7 pts) Explain the difference of mo-

tions (modes) between the first case

(all identical masses) and the second

case (two different masses alternate)

qualitatively (physically) using the an-

swers to (a) to (e). (w(k)’s and the am-

plitudes A1, A2).
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1. (50 pts) Let us consider capacitance of var-

ious forms of capacitors.

a) Find out the capacitance of the follow-

ing capacitors.

i. (10 pts) parallel discs of radius R

with a gap of distance d (R � d)

ii. (10 pts) concentric cylinders with

a radial gap of d = b � a and

length L(� b).

iii. (10 pts) concentric spherical shells

with a radial gap of distance d =

b � a

b) (20 pts) Now suppose that we have

a fixed amount (area) of conductors

out of which one of the above capac-

itors can be made. Assuming that d

is the same for all three shapes which

shape will produce maximum capaci-

tance? You can assume that there is no

wasted material. Additionally the fol-

lowing conditions apply.

i. For discs, d ⌧ R

ii. For cylinder, d = b � a ⌧ a and

b ⌧ L

iii. For sphere, d = b � a ⌧ a
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2. (100 pts) An arc of conducting wire of ra-

dius r is connected to an inductor of self in-

ductance L and a conducting rod, as shown

in the figure. They form a circuit with neg-

ligible resistance, through which a current

I flows. The rod is massless, and pivots

around the origin. A bead of mass m is

attached to the end of the rod, as shown

in the figure. (Neglect all possible frictions

between the rod/arc/bead/pivot.) Gravity

is applied downwards in the figure, with

gravitational acceleration g, and a uniform

magnetic field B is applied, whose direc-

tion is shown in the figure.

a) (20 pts) Initially at q(t = 0) = 0,

I(t = 0) = 0, one gives nonzero initial

velocity to the bead. Using the Lenz’s

law, obtain the relation between I(t)

and q(t). [Our convention is I > 0 for

counterclockwise current, as shown in

the figure.]

b) (20 pts) If q ⌧ 1 (i.e. when the bead

has sufficiently small initial speed),

obtain the equation of motion for q(t).

c) (20 pts) Combining the results of (a)

and (b), show that the system makes

a harmonic oscillation around q = 0,

and compute the oscillation frequency.

d) (20 pts) Now consider the same sys-

tem, at initial position q(t = 0) = q0

and initial current I(t = 0) = 0. Com-

pute the relation between I(t) and

q(t), as in problem (a), and compute

the conserved energy.

e) (20 pts) Investigating the energy com-

puted in problem (d), show that for

q0 = p the system makes a har-

monic oscillation for small enough ini-

tial speed, when B is larger than

B > B⇤ =

r
4mgL

r3 .
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3. (50 pts) Let us consider a useful property

called the mean value theorem (MVT).

a) (20 pts) The MVT states that "for

charge-free space, the value of the

electrostatic potential at any point is

equal to the average of the potential

over the surface of any sphere cen-

tered on that point." Let f(r) is the

electric potential defined on the given

space. If we consider a sphere of ra-

dius a around the point, the average

potential over the surface is defined as

fa =

I

S
f dA

I

S
dA

,

where the integral goes over the sur-

face of the sphere and dA is the in-

finitesimal area element. Show that fa

is equal to f at the center of the sphere.

(Hint: try to consider fa vs. fa+da for

a small value of da.)

b) (15 pts) Consider a point charge q lo-

cated at a distance z on the z-axis from

the center of an imaginary spherical

shell of radius a, such that z > a. Cal-

culate the average potential on the sur-

face of the shell and prove the MVT.

(Hint: It might be easier to locate the

origin of the coordinate system at the

center of the spherical shell.)

c) (15 pts) Using the MVT, prove the

Earnshaw’s theorem, "A charged par-

ticle cannot be held in a stable equilib-

rium by electrostatic forces alone."
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1. (50 pts) Consider a particle with its mass

m and energy E under the following one-

dimensional potential,

V(x) =

8
>>><

>>>:

+• (x  0)

0 (0 < x < a)

V0 (a  x)

with V0 > 0.

a) (10 pts) Write down the Schrödinger

equations for all regions and show

that the particle cannot travel through-

out the region III if E < V0.

b) (15 pts) Write down the wave func-

tions for all regions and their bound-

ary conditions at x = 0 and x = a.

c) (15 pts) Find out the conditions of V0

and a for the particle to have at least

one bound state (Hint: you may use a

graph to find out the number of possi-

ble bound states).

d) (10 pts) Show that the energy levels

converge to those of an infinite poten-

tial well when V0 becomes very large.
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2. (50 pts) Now consider a particle in a

bound state under a general form of one-

dimensional potential U(x). This particle

is spinless (spin=0). The potential U(x) is

not an explicit function of time t. As a re-

sult, the Hamiltonian bH is not an explicit

function of time t, either.

a) (10 pts) Suppose that we have a wave

function y(x, t) which satisfies the

Schrödinger equation in (a). Using the

Schrödinger equation and the proper-

ties of the wave function for the bound

state at x = ±•, show that the nor-

malization of the wave function does

not change over time, that is,

d
dt

Z +•

�•
y⇤(x, t)y(x, t) dx = 0.

b) (10 pts) Suppose that the particle is in

an eigenstate of the Hamiltonian bH at

t = 0 with eigenvalue E, that is

bHy(x, t = 0) = Ey(x, t = 0).

What would be the wave function

y(x, t) of the particle at t > 0? Express

your answer in terms of y(x, t = 0), E

and/or bH.

c) (10 pts) Show that the wave function

y(x, t) obtained in (c) is still an eigen-

state of bH.

d) (10 pts) Suppose that you have two

eigenstates of bH,

u1(x) = y1(x, t = 0)

u2(x) = y2(x, t = 0)

with the identical eigenvalue of E.

Write down the 1-dimensional ordi-

nary differential equation(s) satisfied

by u1(x) or u2(x).

e) (10 pts) Show that the two eigenstates

u1(x) and u2(x) are linearly depen-

dent, that is, show that u2(x) = cu1(x)

with some constant c. (Hint: Consider

the Wronskian of the two functions u1

and u2, W = u2
d

dx u1 � u1
d

dx u2.)
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3. (50 pts) Consider two hydrogen atoms A

and B. The energy of the 1s state is E1. The

electron in each hydrogen atom is in the 1s

state. The two hydrogen atoms are brought

together to form a hydrogen molecule. As

the distance between the two decreases,

there develops an overlap between the two

states represented by the coupling �D =

hGA| bH|GBi where |GAi and |GBi are 1s

states of atoms A and B, respectively, and
bH is the one electron Hamiltonian for the

two hydrogen atoms (that is, two protons).

a) (15 pts) Assuming that |GAi and |GBi
are approximate eigen-states of bH
with energy E1, what is the 2 ⇥ 2

Hamiltonian matrix for the hydrogen

molecule with |GAi and |GBi as the

basis states?

b) (10 pts) Find the eigen-states and en-

ergies for the hydrogen molecule.

c) (10 pts) How much energy does the

system lower by forming a molecule?

d) (15 pts) Sketch the electron probability

density for the two eigen-states along

the line that goes through the nuclei of

the two atoms.

4. (50 pts) For (a) to (c), suppose that we are

living in a one-dimensional space and we

have a particle of mass m (whose size is

negligible) under a half-harmonic potential

V(x) =

8
<

:

mw2

2 x2 (x � 0)

+• otherwise.

The Hamiltonian is given by

bH =
bp2

x
2m

+ V(x).

a) (10 pts) Find (i) (4 pts) the period of

classical oscillation of the system and

(ii) (6 pts) the quantum mechanical en-

ergy eigenvalues. [Hint for (ii): The

energy eigenvalues of a simple har-

monic oscillator is
⇣

n + 1
2

⌘
h̄w where

n = 0, 1, 2, · · · Start from the eigen-

states of a simple harmonic oscillator

and find the ones which have vanish-

ing probability amplitude at x = 0.

Note that since the potential at x < 0

is infinite, the probability amplitude

should vanish at x < 0.]

b) (14 pts) Suppose that the potential

at x < 0 is monotonically and very

rapidly decreased in time from t =

0 so that it ends up being V0(x) =

mw2x2/2 at t = t(> 0). (i) (10 pts)

Now if the particle was in the first
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excited state when t < 0, what will

be the expectation value of bp2
x/(2m) +

V(x) at time t � t? (ii) (4 pts) Find

a condition on t for your answer to (i)

to be valid.

c) (10 pts) Suppose that the Hamiltonian

is
bH(t) =

bp2
x

2m
+ V1(x, t)

for

V1(x, t) =
mw2

2
x2⇥

8
<

:
1 (x � 0)
h
1 + t

t1
Q(t)

i
(x  0)

where

Q(t) =

8
<

:
1 (t � 0)

0 (t < 0).

and t1(> 0) is much longer than any

characteristic time scale of the system.

Initially at t = 0, the particle of mass m

was in the first excited state of bH(t =

0). How much work has been done on

the particle between t = 0 and t = •?

(Hint: How will the number of nodes

in the wavefunction evolve with time?)

d) (16 pts) Now consider a particle with

mass m in a two-dimensional space

whose Hamiltonian is given by

bH =
bp2

x + bp2
y

2m
+ V0(x, y)

where

V0(x, y) =
mw2

2
(x2 + y2).

(i) (8 pts) Find the energy eigenval-

ues of this system (4 pts) and the de-

generacy of each energy level (4 pts).

(Neglect spin.) (ii) (8 pts) Repeat this

problem if V0(x, y) is replaced by

V(x, y) =
8
<

:

mw2

2 (x2 + y2) (x � 0, y � 0)

+• otherwise.
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1. (40 pts) Consider N molecules of

monatomic ideal gas in a box of volume

V in equilibrium at temperature T. The ki-

netic energy of a gas molecule is given by

mv2/2, where m is mass and v is the ve-

locity. For a system in equilibrium at tem-

perature T, the probability of a state with

energy E is proportional to the Boltzmann

factor, exp(�E/kBT).

a) (10 pts) Write the probability distri-

bution for the velocity of particles in-

side the box so that the Maxwell-

Boltzmann distribution is correctly

normalized.

Now suppose that we drill a small pinhole

of area A on the box as shown in the Fig-

ure. Then gas molecules will start to escape

from the box to a region of vacuum. Let

us assume that the disturbance caused by

the pinhole is small, and the gas molecules

have a nearly equilibrium distribution in-

side the box.

b) (10 pts) What is the average velocity

of the gas molecules escaping from the

box? (Suppose that the direction com-

ing out of the hole is the +x direction.)

c) (10 pts) If a gas molecule with x-

velocity component vx was located

within a cylinder of area A and length

vxDt, it will emerge from the box

through the pinhole. What is the rate

that gas molecules escape from the

box just after the hole is made on the

box?

d) (10 pts) Find the total number of gas

molecules per unit time arriving at the

detector with area A0 located at a dis-

tance d from the pinhole.

Some useful integrals

Z +•

0
e�x2

dx =

p
p

2Z +•

0
xe�x2

dx =
1
2
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2. (60 pts) Consider a two-dimensional square

lattice system composed of Ising magnetic

dipoles Sr, which can either point up (Sr =

1) or point down (Sr = �1). Here the sub-

script r = (x, y) denotes a lattice site where

an Ising dipole is located, with integers x

and y satisfying 1  x  N and 1  y  N.

Assuming that it is energetically favorable

to have nearest-neighbor spins aligned in

parallel, the sytem can be described by the

following Hamiltonian,

H =� J
N

Â
x=1

N

Â
y=1h

S(x,y)S(x+1,y) + S(x,y)S(x,y+1)

i
, J > 0,

where we assume a periodic boundary con-

dition S(x+N,y) = S(x,y) = S(x,y+N).

a) (10 pts) Let us try to solve the previ-

ous Hamiltonian using a mean field

approximation. We assume

SrSr0 ⇡ hSriSr0 + SrhSr0 i � hSrihSr0 i

= m(Sr + Sr0)� m2,

where m = 1
N2 ÂN

x=1 ÂN
y=1hS(x,y)i is the

average uniform magnetization. Show

that the Hamiltonian can be approxi-

mated as

H ⇡ Hm = �4Jm
N

Â
x=1

N

Â
y=1

S(x,y) + 2JN2m2.

b) (15 pts) Compute the partition func-

tion Z using Hm from (a) and the def-

inition

Z = Tr


e�
Hm
kBT

�

= Â
S(1,1)=±1

· · · Â
S(N,N)=±1

e�
Hm
kBT .

c) (15 pts) Show that the average magne-

tization m = 1
N2 ÂN

x=1 ÂN
y=1hS(x,y)i sat-

isfies the following equation,

m = tanh


4Jm
kBT

�
.

d) (10 pts) Using the result from (c), show

that there is a critical temperature Tc

which satisfies

m =

(
nonzero, T < Tc

0, T > Tc

and find the expression of Tc.

e) (10 pts) Find m when m is very small

by using the relation tanh x ⇡ x �
x3/3 + ....


