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ABSTRACT17

We present a proof-of-concept simulation-based inference on Ωm and σ8 from the SDSS BOSS LOWZ NGC18

catalog using neural networks and domain generalization techniques without the need of summary statistics. Us-19

ing rapid lightcone simulations, L-PICOLA, mock galaxy catalogs are produced that fully incorporate the observa-20

tional effects. The collection of galaxies is fed as input to a point cloud-based network, Minkowski-PointNet.21

We also add relatively more accurate GADGET mocks to obtain robust and generalizable neural networks. By22

explicitly learning the representations which reduces the discrepancies between the two different datasets via23

the semantic alignment loss term, we show that the latent space configuration aligns into a single plane in which24

the two cosmological parameters form clear axes. Consequently, during inference, the SDSS BOSS LOWZ25

NGC catalog maps onto the plane, demonstrating effective generalization and improving prediction accuracy26

compared to non-generalized models. Results from the ensemble of 25 independently trained machines find27

Ωm=0.339±0.056 and σ8=0.801±0.061, inferred only from the distribution of galaxies in the lightcone slices28

without relying on any indirect summary statistics. A single machine that best adapts to the GADGET mocks29

yields a tighter prediction of Ωm=0.282±0.014 and σ8=0.786±0.036. We emphasize that adaptation across30

multiple domains can enhance the robustness of the neural networks in observational data.31

Keywords: N-body simulations (1083), Cosmological parameters from large-scale structure (340), Redshift32

surveys (1378), Neural networks (1933)33

1. INTRODUCTION34

Following its success in explaining the clustering of mat-35

ter over a wide range of scales, the ΛCDM model has now36

ushered in the era of precision cosmology. The small pertur-37

bations imprinted in the cosmic microwave background grow38
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as cold dark matter falls into and deepens potential wells.39

Small structures gravitationally evolve to create the charac-40

teristic cosmic webs and voids referred to as the large scale41

structures (LSS; Peebles 1981; Davis et al. 1985; Bond et al.42

1996), which are observable in galaxy surveys (de Lappar-43

ent et al. 1986; Geller & Huchra 1989). The LSS serves as a44

widely used probe for constraining the cosmological param-45

eters constituting the ΛCDM model, as it maps the distribu-46

tion and motion of matter throughout the universe over time.47

Over the past few decades, a series of galaxy redshift surveys48
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have been conducted extensively to trace the distribution of49

galaxies and the growth history of LSS across a large spa-50

tial extent and depth (Huchra et al. 1983; York et al. 2000;51

Colless et al. 2001; Sohn et al. 2023).52

Considering the galaxy distribution as a (biased) proxy for53

the total matter content of the universe, power spectrum mul-54

tipoles andn-point correlation functions (n-pCF) can be de-55

rived to express matter clustering at different scales. These56

summary statistics serve as essential components in the de-57

velopment of mock catalogs and in the inference of cos-58

mological parameters. The construction of survey-speci�c59

mocks, which mimic similar summary statistics and the ge-60

ometry of the survey, imposes constraints on certain cosmo-61

logical parameters (Kitaura et al. 2016; White et al. 2014a;62

Saito et al. 2016). Through high-resolution simulations in63

large volumes and by assigning adequate band magnitudes64

and spectroscopic information, generic catalogs applicable to65

various observational surveys can also be generated (Fosalba66

et al. 2015a; Crocce et al. 2015; Fosalba et al. 2015b; Dong-67

Páez et al. 2022). Other than producing the mocks that best68

match the observational catalog, derived summary statistics69

from realizations simulated with varying cosmology can be70

compared with the observational counterpart to make infer-71

ence on the cosmological parameters, an approach referred72

to as simulation-based inference (Villaescusa-Navarro et al.73

2020; Hahn & Villaescusa-Navarro 2021). While these cited74

works rely on prede�ned summary statistics, the simulation-75

based inference framework allows for the potential use of raw76

inputs together with the neural networks' �exible featuriza-77

tions, which permits the exploration beyond summary statis-78

tics.79

With the advent of arti�cial intelligence and machine80

learning, simulation-based inference of cosmological param-81

eters has been accelerated. This involves inferring cosmo-82

logical parameters from simulations by matching summary83

statistics or features, with neural networks serving as an op-84

tion alongside more traditional measures of statistical infer-85

ence such as Markov chain Monte Carlo (MCMC; Alsing86

et al. 2019; Jeffrey & Wandelt 2020). In particular, clas-87

sic summary statistics such as then-pCF and power spectra,88

which convey limited information about the matter distribu-89

tion of the universe, can be replaced with features extracted90

by neural networks that capture much more complex infor-91

mation engraved inside (Shao et al. 2023). Attributed to this92

capability of extracting rich information not hinted at in the93

summary statistics, simulation-based inference with neural94

networks has shown the possibility of producing tight pre-95

dictions on the cosmological parameters (Lemos et al. 2023).96

Therefore, the importance of simulation-based inference is97

being recognized as it can serve as an alternative for verifying98

and possibly resolving tensions in the cosmological parame-99

ters predicted from CMB observations and galaxy surveys,100

especially concerningH0 andS8 � s8
p

Wm=0:3 (Anchordo-101

qui et al. 2021).102

In this context, AI-driven projects have been launched103

to perform diverse tasks, including parameter estimation104

(Villaescusa-Navarro et al. 2022; Ni et al. 2023; Kreisch et al.105

2022). Especially in the estimation of cosmological param-106

eters, 21-cm tomography light cones (Neutsch et al. 2022),107

weak lensing (WL) convergence and shear maps (Fluri et al.108

2018; Fluri et al. 2019; Fluri et al. 2022; Kacprzak & Fluri109

2022; Lu et al. 2023), dark matter density �elds (Pan et al.110

2020; Lazanu 2021; Giri et al. 2023; Hortúa et al. 2023),111

and halo catalogs (Ravanbakhsh et al. 2016; Mathuriya et al.112

2019; Ntampaka et al. 2020; Hwang et al. 2023; Shao et al.113

2023) were utilized as inputs for various neural network114

architectures, typically in a traditional supervised learning115

setup. In contrast to the direct input of mocks, derived sum-116

mary statistics such as then-pCF, count-in-cell, void prob-117

ability function, star formation rate density, and stellar mass118

functions (SMF) were also used as inputs (Boruah et al. 2023;119

Veronesi et al. 2023; Hahn et al. 2023a; Perez et al. 2022;120

Jo et al. 2023). In addition, individual galaxy properties121

(Villaescusa-Navarro et al. 2022), galaxy cluster properties122

(Qiu et al. 2023), or snapshots of galaxy catalogs (de Santi123

et al. 2023) were shown to be useful as inputs for neural net-124

works.125

Among the listed works, most tested their pipeline on sim-126

ulated data sets, and only a few successfully generalized their127

neural networks to the actual observational data. Hahn et al.128

(2023a) and Hahn et al. (2023b) created a mask autoregres-129

sive �ow using the power spectrum and bispectrum as sum-130

mary statistics to provide constraints on cosmological pa-131

rameters, based on the SDSS BOSS CMASS catalog (Reid132

et al. 2016). In contrast, Veronesi et al. (2023) leveraged 2-133

pCF from lognormal mocks as input to fully connected lay-134

ers (FCL). Jo et al. (2023) used FCL emulators to perform135

implicit likelihood inference on observed SMF (Leja et al.136

2020) and SFRD (Leja et al. 2022). Parameter inferences137

using WL convergence maps as probes, including the Kilo138

Degree Survey (Hildebrandt et al. 2017; Asgari et al. 2021)139

and Subaru Hyper Suprime-Cam �rst-year surveys (HSC-140

Y1; Hikage et al. 2019) were also performed with Convo-141

lutional Neural Networks (CNNs) or Graph CNNs (GCNNs;142

Fluri et al. 2019; Fluri et al. 2022; Lu et al. 2023). Notably,143

recent studies regard neural networks' outputs of predicted144

parameters as summary statistics due to their centrally bi-145

ased nature (Gupta et al. 2018; Ribli et al. 2019; Fluri et al.146

2019; Lemos et al. 2023), and perform additional Bayesian147

inferences.148

In line with efforts to use deep learning for constraining149

cosmological parameters, this paper aims to perform a proof-150

of-concept test of conducting cosmological inference using151

the galaxy redshift survey,without relying on any indirect152
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Figure 1. Diagram that exhibits the overall structure of this study with simulation and deep learning pipelines. We aim to infer cosmological
parameters from the observation-driven catalog, SDSS BOSS LOWZ NGC. We produce two lightcone mock suites, L-PICOLA and GADGET

mocks, combiningN-body simulations (sections 2.2 and 2.3) and galaxy-halo connection models (Section 2.5) while fully accounting for
observational effects (Section 2.6). We then utilize a point-cloud-based network,Minkowski-PointNet , which takes individual galaxies as
inputs to predictWm ands8, and their errors (Section 3). The L-PICOLA mocks (source domain) are trained together with the GADGET mocks
(target domain) using the training strategy for the domain adaptation and generalization techniques (see Section 4.3). In this process, we use
training strategies to align the representation of each mock (Section 4). The adapted machines are then applied to unseen domains including the
�ne-tuned MD-PATCHY mocks and the SDSS BOSS LOWZ NGC sample. The main results including the predictions for the actual observation
are shown in Section 5.

summary statistics, but rather utilizing the total raw distribu-153

tion of galaxies as input to the neural network. For this test,154

we focus mainly onWm ands8, which are directly related to155

theS8 � s8
p

Wm=0:3 tension as mentioned above. As men-156

tioned in Hahn et al. (2023a), this choice is due to the fact157

that Wm ands8 are the parameters that are sensitive to the158

cosmological information of the clustering galaxies, while159

others are less constrained. In order to reduce any arti�cial160

priors arising from survey-speci�c observational biases, we161

rapidly generate a large mock suite that fully includes ob-162

servational effects such as redshift space distortion, survey163

footprint, stellar mass incompleteness, radial selection, and164

�ber collision in the SDSS BOSS LOWZ Northern Galactic165

Cap (NGC) catalog. Then, using the position and mass in-166

formation of individual and neighboring galaxies, we make167

inference onWm ands8, againwithout relying on any indi-168

rect summary statistics.169

The biggest dif�culty in using the whole galaxy catalog as170

input instead of the summary statistics is that the selection of171

codes begets overall differences in the resultant realizations.172

The differences are easily discernible and distinguishable by173

complex neural networks. Consequently, naively merging174

the different sets of mocks or domains limits the machines175

to merely learning fragmented domain-speci�c knowledge.176

Recent studies have tried to address such issues, as machines177

failing to attain robustness exhibit poor performances and178

lack predictability on unseen domains (Ni et al. 2023; Shao179

et al. 2023; Roncoli et al. 2023). Moreover, as simulated cat-180

alogs do not perfectly portray the actual universe, such dis-181

crepancies may signi�cantly aggravate the performance of182

machines onto unseen observed data. Especially, the rapid183

generation of mocks trades off with the inaccuracies com-184

pared to the relatively time-consuming simulations, leading185

to a clear deviation. In order to make effective inferences on186

different types of simulation or domains, the neural network187
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must achieve generalizability. This study focuses mainly188

on extracting and learning uni�ed representations originat-189

ing from distinct domains and exploiting generalized and in-190

tegrated knowledge on the observational data.191

This paper is organized as follows. In Section 2, we il-192

lustrate the creation of our mock data that thoroughly in-193

tegrate the observational effects. We produce two suites of194

mocks using two distinct simulations, L-PICOLA and GADGET.195

The footprint and lightcone slices are shown together with196

the observational target, the SDSS BOSS LOWZ NGC cat-197

alog, and its speci�c set of mock catalogs, MD-PATCHY, for198

comparison. In Section 3, input features and the neural net-199

work architecture are introduced together with the training200

strategies in Section 4, to align the latent space representa-201

tions of different mocks and achieve domain generalization202

or robustness. In Section 5, implicit likelihood estimates in203

Wm ands8 using the SDSS BOSS LOWZ NGC catalog are204

shown. We also discuss the impact of �ne-tuned MD-PATCHY205

mocks on the predictability and generalizability of the ma-206

chine. Finally, the results and the following conclusions are207

summarized in Section 7. The overall approach taken by the208

paper is schematically shown in Figure 1.209

2. GALAXY CATALOG: OBSERVATION AND210

SIMULATION211

2.1. The Reference SDSS Catalog212

In this study, we utilize the Baryon Oscillation Spectro-213

scopic Survey (BOSS; Dawson et al. 2013), part of SDSS-III214

(Eisenstein et al. 2011), which extends the previously stud-215

ied distribution of luminous red galaxies (LRGs; Eisenstein216

et al. 2001) from SDSS I/II, adding fainter galaxies and thus217

larger number densities, for the purpose of measuring baryon218

acoustic oscillations. The survey consists of the LOWZ (To-219

jeiro et al. 2014) and CMASS (Reid et al. 2016) catalogs,220

which have different color and magnitude cuts. The LOWZ221

catalog targets galaxies at a low redshift ofz . 0:4, while222

CMASS targets a higher redshift range of 0:4 . z. 0:7. The223

LOWZ samples are roughly considered as volume-limited,224

whereas the CMASS samples, representing `constant mass',225

are considered volume-limited within the mass and redshift226

ranges ofM? > 1011:3M � and z . 0:6 (Reid et al. 2016;227

Maraston et al. 2013). Using theMKSAMPLE code, the LSS228

catalogs for both LOWZ and CMASS were created for BOSS229

DR12, fully equipped with survey masks and random sam-230

ples. These samples include completeness and weights cal-231

culated for the analysis of large-scale structure (Reid et al.232

2016).233

To account for the stellar mass incompleteness of the sur-234

vey and to incorporate cosmological information from the235

stellar masses of galaxies later on, we obtain stellar mass data236

from the value-added Portsmouth SED-�ts catalog (Maras-237

ton et al. 2013), assuming a passive evolution model with the238

Kroupa IMF (Kroupa 2001). Since the Portsmouth SED-�ts239

catalog includes both BOSS and LEGACY targets, we need240

to select those that are included in the LSS catalog. Follow-241

ing Rodŕ�guez-Torres et al. (2016), we match galaxies using242

the unique combination of tagsMJD, PLATEID, andFIBERID, and243

then assign the stellar masses from the matched galaxies in244

the Portsmouth catalog to the corresponding entries in the245

LSS catalog.246

In this work, we use the Northern Galactic Cap (NGC)247

of the LOWZ samples with RA=150� –240� and DEC> 0� .248

The selection of the LOWZ samples and the cropped regions249

is due to the limited volume of the lightcone simulations250

that will be used to generate mocks. Using this catalog as251

a benchmark, we generate mocks that incorporate the same252

observational effects: redshift space distortions, survey foot-253

print geometry, stellar mass incompleteness, radial selection254

matching, and �ber collision (see Section 2.6 for more infor-255

mation).256

2.2. Rapidly Generated Lightcone Mocks,L-PICOLA257

L-PICOLA is a rapid dark matter simulation that employs the258

COmoving Lagrangian Acceleration method (COLA; Tassev259

et al. 2013) and supports on-the-�y generation of lightcones.260

At the expense of minute errors—2% in the power spectrum261

and 5% in the bispectrum—the code allows for the rapid262

generation of dark matter distributions in large box sizes263

(Howlett et al. 2015a). Numerous studies have leveraged264

on this computational ef�ciency to produce a vast amount of265

mock catalogs aimed for diverse observations (Howlett et al.266

2015b; Howlett et al. 2022; Ishikawa et al. 2023).267

In a box volume of (1.2h� 1Gpc)3 we simulate the evo-268

lution of 12003 dark matter particles on 12003 meshes.269

Each particle has a mass of approximatelyMp � 8:3 �270

1010
� Wm

0:3

�
h� 1M � . The simulation starts with a 2LPT ini-271

tial condition generated with 2LPTIC (Scoccimarro et al.272

2012) atzinitial= 9 and progresses in 10 steps toz= 0:45, as273

Howlett et al. (2015a) suggests for suf�cient precision in274

the resolution adopted here, with 10 lightcone slices gen-275

erated fromz= 0:45 to z= 0. A total of 1500 simulations276

are produced, incorporating cosmic variance across vary-277

ing Wm and s8. Each of the two parameters is randomly278

sampled from a uniform distribution ofWm2[0:1;0:5] and279

s82[0:6;1:0]. We assumeH0= 100h km s� 1 Mpc� 1 with280

h= 0:674,ns= 0:96 following the results from Planck Collab-281

oration et al. (2020). We select a realization from one pair282

of cosmological parameters most similar to the �ducial cos-283

mology of MD-PATCHY with Wm = 0:3067;s8 = 0:8238 and284

name itL-PICOLA fiducial . We obtain the halos using285

the ROCKSTARhalo �nder (Behroozi et al. 2013b) in lightcone286

mode, considering a minimum number of 10 particles as a287

seed halo (most detailed layer of subgroup hierarchy deter-288

mined by the friends-of-friends algorithm). Thus, we impose289
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a cut in the halo mass of log(Mh=h� 1M � )= 11:45. Subse-290

quently, the 1500 catalogs are rotated and re�ected in six291

directions following Ravanbakhsh et al. (2016), generating292

a total of 9000 realizations referred to as L-PICOLA mocks.293

These mocks will be further cropped and masked separately294

according to the observational effects. From this we estab-295

lish a one-to-one correspondence between the subhalos and296

galaxies.297

2.3. Adaptation: Gravitational N-body Simulation Mocks,298

GADGET299

The L-PICOLA mocks described in Section 2.2 lack accuracy300

in the clustering statistics on small scales compared to full301

N-body simulations (see Section 4.1). Therefore, we simi-302

larly generate mocks using GADGET-4 (Springel et al. 2021)303

in lightcone mode, which we refer to as GADGET mocks. Al-304

though they require more computational time and resources305

to generate than L-PICOLA mocks, GADGET mocks, are gener-306

ally considered to offer higher �delity at smaller scales (see307

Howlett et al. 2015a). Consequently, we use GADGET mocks308

as adaptation standards of the neural networks, to re�ne the309

code-speci�c knowledge from L-PICOLA mocks, implement-310

ing a training strategy that aligns the neural networks' ex-311

tracted representations. For additional details, refer to Sec-312

tion 4.313

The simulation resolution is the same as that of mock suites314

generated with L-PICOLA: a box volume of (1.2h� 1Gpc)3315

and 12003 dark matter particles with a softening length of316

10h� 1kpc. The simulation initiates with a 2LPT initial con-317

dition generated with N-GenIC (Springel 2015) at zinitial = 10,318

similar to L-PICOLA, and ends atz= 0.1 The cosmological pa-319

rameters of the �ducial run,GADGET fiducial, are set to320

be identical to those of MD-PATCHY mocks in Section 2.4:321

Wm= 0:307115,s8= 0:8288, andh= 0:6777, with other pa-322

rameters �xed to the previously stated values. Furthermore,323

in order to test the machine's predictability for non-�ducial324

mocks, we produceGADGET lowwith Wm= 0:2, s8= 0:7 and325

GADGET highwith Wm= 0:4, s8= 0:8. We generate 6 sam-326

ples each by rotating and re�ecting the three GADGET simula-327

tions, totalling 18 samples.328

2.4. Adaptation: Fine-Tuned Mocks,MD-PATCHY329

MULTIDARK PATCHY Mocks (hereafter MD-PATCHY) are330

mock galaxy catalogs designed to match the SDSS-III BOSS331

survey (Kitaura et al. 2016; Rodr�́guez-Torres et al. 2016).332

They referenced the BIGMULTIDARK simulation (Klypin et al.333

2016), a N-body simulation run on GADGET-2 (Springel334

1 We acknowledge that starting a fullN-body simulation, GADGET, at low
redshifts may lead to inaccuracies, unlike L-PICOLA, despite the reduction
of computational resources. The choice of the initial redshift was based
on the comparative analyses presented in Howlett et al. (2015a). We leave
such improvements to be addressed in our future work.

Figure 2. Count of galaxies per radial bins for SDSS BOSS LOWZ
NGC (red solid line), L-PICOLA fiducial (orange dashed line),
GADGET fiducial (green dashed line), and averaged count for all
2048 MD-PATCHY (blue dashed line). The radial bins from redshift
0.15 to 0.4 are de�ned to evenly divide the redshift space volume.
All lightcone mocks with �ducial cosmological parameters exhibit a
consistent number of galaxies across different radial bins compared
to the SDSS BOSS LOWZ NGC catalog. See Section 2.6 for more
information.

2005). The halos from the BIGMULTIDARK are populated us-335

ing the stochastic halo abundance matching technique and336

the observational effects including redshift space distortion,337

survey footprint, stellar mass incompleteness, radial selec-338

tion, and �ber collision are considered using theSUGAR code339

(Rodŕ�guez-Torres et al. 2016). The reference catalog is used340

to calibratePATCHY (Kitaura et al. 2013), which employs aug-341

mented Lagrangian Perturbation Theory (ALPT; Kitaura &342

Heß 2013) to generate dark matter �elds. These �elds are bi-343

ased and the halo masses are identi�ed using theHADRON code344

(Zhao et al. 2015), which takes the halos' environmental in-345

formation into account. The halo catalog is further processed346

into galaxy mocks using the halo abundance matching proce-347

dure in theSUGAR code. Speci�cally, the clustering statistics348

are �tted by �ne-tuning a single parameter–the scatter in the349

HAM procedure (sHAM (VpeakjM?)), whereM? represents the350

stellar mass andVpeak the peak velocity observed throughout351

the history of the halo. In total, 10240 MD-PATCHY mocks that352

mimic the clustering statistics, stellar mass functions, and ob-353

servational effects are produced. The cosmological param-354

eters used areWm= 0:307115,s8= 0:8288, andh= 0:6777.355

In this work, we focus on the 2048 mocks of the Northern356

Galactic Cap (NGC) of the LOWZ samples. Similarly to the357

GADGET mocks in Section 2.3, the MD-PATCHY mocks are used358

as reference mocks for adaptation of the neural networks dur-359

ing the training phase (see Section 4 for more information).360

2.5. Galaxy-Halo Connection361
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