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ABSTRACT

We present a proof-of-concept simulation-based inference on Qy, and og from the SDSS BOSS LOWZ NGC
catalog using neural networks and domain generalization techniques without the need of summary statistics. Us-
ing rapid lightcone simulations, L-picoLa, mock galaxy catalogs are produced that fully incorporate the observa-
tional effects. The collection of galaxies is fed as input to a point cloud-based network, Minkowski-PointNet.
We also add relatively more accurate GADGET mocks to obtain robust and generalizable neural networks. By
explicitly learning the representations which reduces the discrepancies between the two different datasets via
the semantic alignment loss term, we show that the latent space configuration aligns into a single plane in which
the two cosmological parameters form clear axes. Consequently, during inference, the SDSS BOSS LOWZ
NGC catalog maps onto the plane, demonstrating effective generalization and improving prediction accuracy
compared to non-generalized models. Results from the ensemble of 25 independently trained machines find
Q,n=0.33940.056 and 03=0.801+£0.061, inferred only from the distribution of galaxies in the lightcone slices
without relying on any indirect summary statistics. A single machine that best adapts to the GADGET mocks
yields a tighter prediction of Q,,=0.28240.014 and 63=0.786+£0.036. We emphasize that adaptation across
multiple domains can enhance the robustness of the neural networks in observational data.

Keywords: N-body simulations (1083), Cosmological parameters from large-scale structure (340), Redshift
surveys (1378), Neural networks (1933)

1. INTRODUCTION 3 as cold dark matter falls into and deepens potential wells.
s Small structures gravitationally evolve to create the charac-
a1 teristic cosmic webs and voids referred to as the large scale
2 structures (LSS; Peebles 1981; Davis et al. 1985; Bond et al.
13 1996), which are observable in galaxy surveys (de Lappar-
« ent et al. 1986; Geller & Huchra 1989). The LSS serves as a
ss widely used probe for constraining the cosmological param-
Corresponding author: Ji-hoon Kim s eters constituting the ACDM model, as it maps the distribu-
mornkr@snu.ac.kr « tion and motion of matter throughout the universe over time.

s Over the past few decades, a series of galaxy redshift surveys

Following its success in explaining the clustering of mat-
ter over a wide range of scales, the ACDM model has now
ushered in the era of precision cosmology. The small pertur-
bations imprinted in the cosmic microwave background grow
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49 have been conducted extensively to trace the distribution af. especially concerninblp andSg Sgp Wh=0:3 (Anchordo-

so galaxies and the growth history of LSS across a large spas qui et al. 2021).

s1 tial extent and depth (Huchra et al. 1983; York et al. 20005 In this context, Al-driven projects have been launched
s2 Colless et al. 2001; Sohn et al. 2023). 14 to perform diverse tasks, including parameter estimation
ss  Considering the galaxy distribution as a (biased) proxy fokes (Villaescusa-Navarro et al. 2022; Ni et al. 2023; Kreisch et al.
s« the total matter content of the universe, power spectrum mules 2022). Especially in the estimation of cosmological param-
ss tipoles andn-point correlation functionsntpCF) can be de- 1o eters, 21-cm tomography light cones (Neutsch et al. 2022),
ss rived to express matter clustering at different scales. These weak lensing (WL) convergence and shear maps (Fluri et al.
s7 summary statistics serve as essential components in the de-2018; Fluri et al. 2019; Fluri et al. 2022; Kacprzak & Fluri

ss velopment of mock catalogs and in the inference of cosmoe 2022; Lu et al. 2023), dark matter density elds (Pan et al.
s mological parameters. The construction of survey-speci ai: 2020; Lazanu 2021; Giri et al. 2023; Hoa et al. 2023),

s mocks, which mimic similar summary statistics and the ge+:. and halo catalogs (Ravanbakhsh et al. 2016; Mathuriya et al.
&1 ometry of the survey, imposes constraints on certain cosmars 2019; Ntampaka et al. 2020; Hwang et al. 2023; Shao et al.
s logical parameters (Kitaura et al. 2016; White et al. 2014a;:. 2023) were utilized as inputs for various neural network
s Saito et al. 2016). Through high-resolution simulations inus architectures, typically in a traditional supervised learning
s large volumes and by assigning adequate band magnitudes setup. In contrast to the direct input of mocks, derived sum-
s and spectroscopic information, generic catalogs applicable t& mary statistics such as thepCF, count-in-cell, void prob-

es Various observational surveys can also be generated (Fosaliaability function, star formation rate density, and stellar mass
o7 et al. 2015a; Crocce et al. 2015; Fosalba et al. 2015b; Dongars functions (SMF) were also used as inputs (Boruah et al. 2023;
e Paez et al. 2022). Other than producing the mocks that best Veronesi et al. 2023; Hahn et al. 2023a; Perez et al. 2022;
s Match the observational catalog, derived summary statistics Jo et al. 2023). In addition, individual galaxy properties
70 from realizations simulated with varying cosmology can bez: (Villaescusa-Navarro et al. 2022), galaxy cluster properties
7 compared with the observational counterpart to make infer=s (Qiu et al. 2023), or snapshots of galaxy catalogs (de Santi
72 ence on the cosmological parameters, an approach referredet al. 2023) were shown to be useful as inputs for neural net-
73 t0 as simulation-based inference (Villaescusa-Navarro et abs works.

22 2020; Hahn & Villaescusa-Navarro 2021). While these cited.s  Among the listed works, most tested their pipeline on sim-
75 WOrks rely on prede ned summary statistics, the simulation12r ulated data sets, and only a few successfully generalized their
7 based inference framework allows for the potential use of raws neural networks to the actual observational data. Hahn et al.
77 inputs together with the neural networks' exible featuriza- 120 (2023a) and Hahn et al. (2023b) created a mask autoregres-
78 tions, which permits the exploration beyond summary statisse Sive ow using the power spectrum and bispectrum as sum-
79 tiCs. 131 Mary statistics to provide constraints on cosmological pa-
s With the advent of articial intelligence and machine 12 rameters, based on the SDSS BOSS CMASS catalog (Reid
a1 learning, simulation-based inference of cosmological params: et al. 2016). In contrast, Veronesi et al. (2023) leveraged 2-
g2 eters has been accelerated. This involves inferring cosme= pCF from lognormal mocks as input to fully connected lay-
s logical parameters from simulations by matching summary:s ers (FCL). Jo et al. (2023) used FCL emulators to perform
s« Statistics or features, with neural networks serving as an ops implicit likelihood inference on observed SMF (Leja et al.
ss tion alongside more traditional measures of statistical infers, 2020) and SFRD (Leja et al. 2022). Parameter inferences
s ence such as Markov chain Monte Carlo (MCMC; Alsingiss using WL convergence maps as probes, including the Kilo
g7 et al. 2019; Jeffrey & Wandelt 2020). In particular, clas-1:2 Degree Survey (Hildebrandt et al. 2017; Asgari et al. 2021)
ss SIC summary statistics such as th@CF and power spectra, 10 and Subaru Hyper Suprime-Cam rst-year surveys (HSC-
s Which convey limited information about the matter distribu-1.: Y1; Hikage et al. 2019) were also performed with Convo-
s tion of the universe, can be replaced with features extracteg lutional Neural Networks (CNNs) or Graph CNNs (GCNNSs;
a1 by neural networks that capture much more complex inforws Fluri et al. 2019; Fluri et al. 2022; Lu et al. 2023). Notably,
%2 mation engraved inside (Shao et al. 2023). Attributed to this. recent studies regard neural networks' outputs of predicted
s capability of extracting rich information not hinted at in the s parameters as summary statistics due to their centrally bi-
e« SUmMmary statistics, simulation-based inference with neurals ased nature (Gupta et al. 2018; Ribli et al. 2019; Fluri et al.
s networks has shown the possibility of producing tight pre-sz 2019; Lemos et al. 2023), and perform additional Bayesian
s dictions on the cosmological parameters (Lemos et al. 2023)s inferences.

o7 Therefore, the importance of simulation-based inference iss In line with efforts to use deep learning for constraining
% being recognized as it can serve as an alternative for verifyinge cosmological parameters, this paper aims to perform a proof-
% and possibly resolving tensions in the cosmological parames: of-concept test of conducting cosmological inference using
100 ters predicted from CMB observations and galaxy surveyss. the galaxy redshift surveywithout relying on any indirect
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Figure 1. Diagram that exhibits the overall structure of this study with simulation and deep learning pipelines. We aim to infer cosmological
parameters from the observation-driven catalog, SDSS BOSS LOWZ NGC. We produce two lightcone mock -suitelsy and GADGET

mocks, combiningN-body simulations (sections 2.2 and 2.3) and galaxy-halo connection models (Section 2.5) while fully accounting for
observational effects (Section 2.6). We then utilize a point-cloud-based netvitkowski-PointNet , which takes individual galaxies as

inputs to predictMy andsg, and their errors (Section 3). TherilcoLA mocks (source domain) are trained together with the&&T mocks

(target domain) using the training strategy for the domain adaptation and generalization techniques (see Section 4.3). In this process, we use
training strategies to align the representation of each mock (Section 4). The adapted machines are then applied to unseen domains including the
ne-tuned MD-PATCHY mocks and the SDSS BOSS LOWZ NGC sample. The main results including the predictions for the actual observation
are shown in Section 5.

153 sSummary statistics, but rather utilizing the total raw distribu-7  The biggest dif culty in using the whole galaxy catalog as
154 tion of galaxies as input to the neural network. For this testy: input instead of the summary statistics is that the selection of
155 We focus nh';\inly oM\, andsg, which are directly related to 172 codes begets overall differences in the resultant realizations.
s theS  sg  W,=0:3 tension as mentioned above. As men-izz The differences are easily discernible and distinguishable by
157 tioned in Hahn et al. (2023a), this choice is due to the fact» complex neural networks. Consequently, naively merging
158 that W, andsg are the parameters that are sensitive to thes the different sets of mocks or domains limits the machines
159 cosmological information of the clustering galaxies, whileiss to merely learning fragmented domain-speci ¢ knowledge.
160 Others are less constrained. In order to reduce any arti cial- Recent studies have tried to address such issues, as machines
161 Priors arising from survey-speci ¢ observational biases, wears failing to attain robustness exhibit poor performances and
162 rapidly generate a large mock suite that fully includes ob1 lack predictability on unseen domains (Ni et al. 2023; Shao
163 Servational effects such as redshift space distortion, survey et al. 2023; Roncoli et al. 2023). Moreover, as simulated cat-
164 fOOtprint, stellar mass incompleteness, radial selection, ang alogs do not perfectly portray the actual universe, such dis-
165 ber collision in the SDSS BOSS LOWZ Northern Galactic = crepancies may signi cantly aggravate the performance of
16 Cap (NGC) catalog. Then, using the position and mass inss machines onto unseen observed data. Especially, the rapid
167 formation of individual and neighboring galaxies, we makess generation of mocks trades off with the inaccuracies com-
168 inference oMy andsg, againwithoutrelying on any indi- s pared to the relatively time-consuming simulations, leading
160 Fect summary statistics. 186 t0 @ clear deviation. In order to make effective inferences on
17 different types of simulation or domains, the neural network




4

188 MUSt achieve generalizability. This study focuses mainlys Kroupa IMF (Kroupa 2001). Since the Portsmouth SED- ts
180 ON extracting and learning uni ed representations originat=« catalog includes both BOSS and LEGACY targets, we need
190 ing from distinct domains and exploiting generalized and in-.: to select those that are included in the LSS catalog. Follow-
1 tegrated knowledge on the observational data. 22 iNg Rodfguez-Torres et al. (2016), we match galaxies using
12 This paper is organized as follows. In Section 2, we il-2s the unique combination of tagsp, PLATEID, andrFiserip, and

103 lustrate the creation of our mock data that thoroughly in=s« then assign the stellar masses from the matched galaxies in
104 tegrate the observational effects. We produce two suites e the Portsmouth catalog to the corresponding entries in the
155 Mocks using two distinct simulations;AicoLa and GibGeT. 26 LSS catalog.

196 The footprint and lightcone slices are shown together withs:  In this work, we use the Northern Galactic Cap (NGC)
107 the observational target, the SDSS BOSS LOWZ NGC catss of the LOWZ samples with RA=156240 and DEG 0 .

1 alog, and its speci ¢ set of mock catalogs, MarcHy, for 2 The selection of the LOWZ samples and the cropped regions
199 cOmparison. In Section 3, input features and the neural netw is due to the limited volume of the lightcone simulations
200 WOrk architecture are introduced together with the trainings: that will be used to generate mocks. Using this catalog as
01 Strategies in Section 4, to align the latent space representa a benchmark, we generate mocks that incorporate the same
202 tions of different mocks and achieve domain generalizations: observational effects: redshift space distortions, survey foot-
203 OF robustness. In Section 5, implicit likelihood estimates ins. print geometry, stellar mass incompleteness, radial selection
200 W andsg using the SDSS BOSS LOWZ NGC catalog arezs matching, and ber collision (see Section 2.6 for more infor-
20s Shown. We also discuss the impact of ne-tuned MBeHy 256 mation).

206 Mocks on the predictability and generalizability of the ma-

207 chine. Finally, the results and the following conclusions arg,, 2 5. Rapidly Generated Lightcone Mocks,PICOLA

206 SUMMarized in Section 7. The overall approach taken by the ) . . .
. paper is schematically shown in Figure 1. 28 L-PicoLAis a rapid dark matter simulation that employs the

250 COmoving Lagrangian Acceleration methodo(@; Tassev
o 2 GALAXY CATALOG: OBSERVATION AND 20 €t al. 2013) and supports on-the- y generation of lightcones.
» SIMULATION 261 At the expense of minute errors—2% in the power spectrum
262 and 5% in the bispectrum—the code allows for the rapid
212 2.1. The Reference SDSS Catalog 2 generation of dark matter distributions in large box sizes
23 In this study, we utilize the Baryon Oscillation Spectro-z. (Howlett et al. 2015a). Numerous studies have leveraged
214 SCOpiC Survey (BOSS; Dawson et al. 2013), part of SDSS-Ilks on this computational ef ciency to produce a vast amount of
215 (Eisenstein et al. 2011), which extends the previously studss mock catalogs aimed for diverse observations (Howlett et al.
216 ied distribution of luminous red galaxies (LRGs; Eisensteins, 2015b; Howlett et al. 2022; Ishikawa et al. 2023).
27 et al. 2001) from SDSS I/11, adding fainter galaxies and thusss  In a box volume of (1.B 1Gpcy we simulate the evo-
s larger number densities, for the purpose of measuring baryos lution of 120G dark matter particles on 1280meshes.
210 acoustic oscillations. The survey consists of the LOWZ (To=n Each particle has a mass of approximatély  8:3
20 jeiro et al. 2014) and CMASS (Reid et al. 2016) catalogs: 10'° ¥ h M . The simulation starts with a 2LPT ini-
21 Which have different color and magnitude cuts. The LOWZz tial condition generated with 2LRJ (Scoccimarro et al.
222 catalog targets galaxies at a low redshiftzaf 0:4, while 2z 2012) atzpiig=9 and progresses in 10 stepszto0:45, as
222 CMASS targets a higher redshift range 040 z. 0:7. The . Howlett et al. (2015a) suggests for suf cient precision in
22 LOWZ samples are roughly considered as volume-limited;ss the resolution adopted here, with 10 lightcone slices gen-
225 Whereas the CMASS samples, representing “constant masss, erated fromz=0:45 to z=0. A total of 1500 simulations
226 are considered volume-limited within the mass and redshitt» are produced, incorporating cosmic variance across vary-
27 ranges ofM, > 10''3M andz. 0:6 (Reid et al. 2016; s ing Wn andsg. Each of the two parameters is randomly
228 Maraston et al. 2013). Using thexsavpLe code, the LSS 2o sampled from a uniform distribution dM,2[0:1;0:5] and
2o catalogs for both LOWZ and CMASS were created for BOSSw Sg2[0:6;1:0]. We assumeHo=100h km s 1 Mpc ! with
20 DR12, fully equipped with survey masks and random samss: h=0:674,ns= 0:96 following the results from Planck Collab-
2a ples. These samples include completeness and weights calb-oration et al. (2020). We select a realization from one pair
222 culated for the analysis of large-scale structure (Reid et als: of cosmological parameters most similar to the ducial cos-
223 2016). 25 Mology of MD-paTcHy with W, = 0:3067 sg = 0:8238 and
23 10 account for the stellar mass incompleteness of the suss hame itL-PICOLA fiducial . We obtain the halos using
235 Vey and to incorporate cosmological information from thess the Rockstarhalo nder (Behroozi et al. 2013b) in lightcone
23 Stellar masses of galaxies later on, we obtain stellar mass datamode, considering a minimum number of 10 particles as a
27 from the value-added Portsmouth SED- ts catalog (Maraszss seed halo (most detailed layer of subgroup hierarchy deter-
238 ton et al. 2013), assuming a passive evolution model with thes mined by the friends-of-friends algorithm). Thus, we impose



200 @ cUt in the halo mass of Ilh=h M )=11:45. Subse-

201 quently, the 1500 catalogs are rotated and re ected in six
202 directions following Ravanbakhsh et al. (2016), generating
203 @ total of 9000 realizations referred to asitoLa mocks.

204 These mocks will be further cropped and masked separately
20s @according to the observational effects. From this we estab-
206 lish a one-to-one correspondence between the subhalos and
207 galaxies.

208 2.3. Adaptation: Gravitational N-body Simulation Mocks,
299 GADGET

s The L-ricoLa mocks described in Section 2.2 lack accuracy

in the clustering statistics on small scales compared to full

a2 N-body simulations (see Section 4.1). Therefore, we simi-

!arly generate mocks ysmgpﬁGET-4 (Springel et al. 2021) Figure 2. Count of galaxies per radial bins for SDSS BOSS LOWZ
= In lightcone modg, which we refer t‘? aS\ﬁ;_ET mocks. Al- NGC (red solid ling, L-PICOLA fiducial (orange dashed line
though they require more computational time and resources GADGET fiducial (green dashed lijeand averaged count for all

30.

2

30:

@

30!

a

s0s t0 generate than-kicoLa mocks, GoGet mocks, are gener- 2048 MD-+aTcHy (blue dashed ling The radial bins from redshift
a7 ally considered to offer higher delity at smaller scales (see 0.15 to 0.4 are de ned to evenly divide the redshift space volume.
ss Howlett et al. 2015a). Consequently, we useb&T mocks All lightcone mocks with ducial cosmological parameters exhibit a

as adaptation standards of the neural networks, to re ne the Cconsistent number of galaxies across different radial bins compared
to the SDSS BOSS LOWZ NGC catalog. See Section 2.6 for more

information.

30
a0 code-speci ¢ knowledge from icoLa mocks, implement-
ing a training strategy that aligns the neural networks' ex-

tracted representations. For additional details, refer to Sec-
s tion 4 P as 2005). The halos from thei@MuLtiDark are populated us-
1. .

s The simulation resolution is the same as that of mock suite®’ ing the stochastlc halo a_bunda_nce matc_hmg techr_uque_ and
generated with leicola: a box volume of (LB Gpc) a7 the observational effects including redshift space distortion,

and 1208 dark matter particles with a softening length of survey footprint, stellar mass incompleteness, radial selec-
2 10h Tkpc. The simulation initiates with a 2L PT initial con- = 10 and ber collision are considered using thesar code

dition generated with Nsenic (Springel 2015) atgs =10, (Rodfguez-Torres e_t al. 2016). The refergnce catalog is used
similar to LeicoLa, and ends at= 0.1 The cosmological pa- ** to calibraterarcHy (Kitaura et al. 2013), which employs aug-

rameters of the ducial runGADGET fiducial, are set to mented Lagrangian Perturbation Theory (ALPT; Kitaura &
1 be identical to those of MDarcry mocks in éection 04 Hef3 2013) to generate dark matter elds. These elds are bi-

2 Wiy= 0:307115,5 5= 0:8288, anch=0:6777, with other pa- ** ased and the halo masses are identi ed usingitbeon code

rameters xed to the previously stated values. Furthermore,’ (Zhao et al. 2015), which takes the halos' environmental in-

= in order to test the machine's predictability for non- ducial *® formation into account. The halo catalog is further processed
s mocks, we producEADGET lowith W= 02, sg=0:7 and into galaxy mocks using the halo abundance matching proce-
GADG’ET highvith Wi,= 0:4, 5= 0:8. We ée’ne?até 6 sam- * dure in thesucar code. Speci cally, the clustering statistics

ples each by rotating and re ecting the threeoGer simula- ~ ** are tted by ne-tuning a single parameter—the scatter in the
tions, totalling 18 samples sso HAM procedure §pam (Vpead M2)), WhereM- represents the

=1 Stellar mass andyeaxthe peak velocity observed throughout
329 2.4. Adaptation: Fine-Tuned Mock&)D-PATCHY a2 the history of the halo. In total, 10240 MBXrcHy mocks that
s MuLTIDARK PatcHy Mocks (hereafter MDeatchy) are % mimic the clustering statistics, stellar mass functions, and ob-

s mock galaxy catalogs designed to match the SDSS-11l BOSS* servational effects are produced. The cosmological param-
= survey (Kitaura et al. 2016; Rdguez-Torres et al. 2016). ¥ €ters used aréy=0:307115,s5= 0:8288, andh=0:6777.

= They referenced thei@ViuLti Dark simulation (Klypin etal. % In this work, we focus on the 2048 mocks of the Northern
= 2016), aN-body simulation run on @cer-2 (Springel 7 Galactic Cap (NGC) of the LOWZ samples. Similarly to the
ass GADGET mocks in Section 2.3, the MBarcHy mocks are used
a0 as reference mocks for adaptation of the neural networks dur-

! We acknowledge that starting a fii-body simulation, GDGET, at low s, ing the training phase (see Section 4 for more information).
redshifts may lead to inaccuracies, unlikeICOLA, despite the reduction
of computational resources. The choice of the initial redshift was based
on the comparative analyses presented in Howlett et al. (2015a). We leave .
such improvements to be addressed in our future work. 361 2.5. Galaxy-Halo Connection
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