
Physics II (Fall 2023): Final Exam Solution

Dec. 8, 2023

[total 20 pts, closed book, 90 minutes]

1. (a) [1 pt] In the wire arrangement shown below (with d1 = 4 cm and d2 = 12 cm), the current
in the straight wire changes as I(t) = 5.0t2−6.0t, where I is in A (amperes) and t is in seconds.
Find the net emf E at t = 3.0 s in the square loop with resistance R = 0.40 mΩ. What is the
magnitude and direction of the induced current in the loop?

(b) [2 pt] In the circuit below, the resistance is R = 14 Ω, and the ideal battery has an emf of
E = 35 V. The capacitor of C = 6.2µF is initially uncharged, and the inductor has L = 54 mH.
First, the switch was moved to position “a” and held there for a long time; then, it was quickly
thrown to position “b”. What are the angular frequency ω and the current amplitude Im of the
resulting oscillations?

(c) [1 pt] Sunspots appear temporarily on the solar photosphere as dark patches of sizes up to
25,000 km in radius. Their surface temperature is reduced by concentrations of magnetic flux
which prohibit convection, making them appear darker than their surrounding areas. Magnetic
fields within a sunspot can be as strong as B = 0.40 T while those on the Earth are only tens
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of µT. Let us assume that the material in a sunspot has a density of ρ = 3.0× 10−4 kg/m3, and
that its permeability is µ0. If 100% of the magnetic field energy stored in a sunspot is used to
eject the sunspot’s material away from the Sun’s surface, what would be the ejection velocity
v? Check if this magnetic field energy alone is enough to make the material escape the Sun’s
gravity, whose mass and radius are M� = 2.0 × 1030 kg and R� = 7.0 × 105 km, respectively.
(Note: You may want to be reminded that, when expressed in SI base units, 1 T = 1 kg/A · s2.)

• (a) Eind = −dΦB
dt = − d

dt

[∫ d2
d1

µ0I(t)
2πr · (d1 + d2)dr

]
= − µ0(d1+d2)

2π ln
(
d2
d1

)
· dIdt .

• (b) Im = max
(
dQ
dt

)
= ωQ = 1√

LC
· CV .

• (c) From Eq.(30-55) of Halliday & Resnick uB = B2

2µ0
= 1

2ρv
2 → v =

√
B2

ρµ0
= 2.0× 104 m/s.

Meanwhile, from Eq.(13-28) of Halliday & Resnick, for the Sun vesc =
√

2GM�
R�

= 6.2× 105 m/s.

2. (a) [1 pt] For an electron moving along a circular path with radius r that is much larger than
an atomic radius, show that its orbital magnetic dipole moment ~µ can be written as ~µ = − e

2m
~L

where m is the mass of an electron, and ~L is its orbital angular momentum. It should be noted
that the derivation does not apply to an electron within an atom, for which quantum theory is
required.

(b) [2 pt] Write down Maxwell’s equations (in the integral form, not in the differential form),
the four fundamental equations of electromagnetism. Then, starting from Faraday’s law of
induction and Maxwell’s law of induction, derive the equation that describes a traveling plane
electromagnetic wave. Here, you are asked to explicitly derive the wave equations for the electric
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field E(x, t) and the magnetic field B(x, t), and you are welcome to utilize the figure below that
was discussed extensively in the class. (Note: Do not use the differential form of Maxwell’s
equations for this problem. You will have an opportunity to do so in other courses.)

• (a) ~µ = IA · n̂ = e
2πr/v · πr

2 ·
(
− ~L
|~L|

)
= evr

2 ·
1

mvr · (−~L) = − e
2m
~L. For details, see Chapter 32-5

of Halliday & Resnick.

• (b)
∮
~E · d~s = −dΦB

dt → hdE = −hdxdBdt →
∂E
∂x = −∂B

∂t , while
∮
~B · d~s = µ0ε0

dΦE
dt →

−hdB = µ0ε0
(
hdxdBdt

)
→ −∂B

∂x = µ0ε0
∂E
∂t . Then, by combining the two resulting equations

and noting c = 1√
µ0ε0

, one can obtain ∂2E
∂x2

= 1
c2
∂2E
∂t2

and ∂2B
∂x2

= 1
c2
∂2B
∂t2

. For details, see Chapter

33-1 of Halliday & Resnick.

3. (a) [2 pt] A pencil with a height of 5.0 cm is placed 10 cm in front of a system of two
thin lenses. Lens 1, which is closer to the pencil, has a focal length of f1 = –15 cm, lens 2 has
f2 = 12 cm, and the lenses are separated by d = 12 cm. For the image produced by lens 2, (i)
how far is the image located from lens 2 (i.e., the image distance i2 including its sign), and
(ii) what is the height of the image? Also, (iii) what is the image type (real or virtual) and
orientation (inverted with respect to the original object or not inverted)?

(b) [1 pt] When a planoconvex lens is placed on a flat glass plate, light incident from above
creates circular interference fringes known as Newton’s rings (see figure). This pattern is asso-
ciated with the variable thickness of the air film between the lens and the glass plate. (i) For a
lens with an index of refraction n1 = 1.5 and radius of curvature R = 6.0 m, and a glass plate
with n2 = 1.8, find the radius r of the third bright ring, in light of the wavelength λ = 550 nm.
(ii) If water with n3 = 1.3 now fills the space between the lens and the plate, what is the new
radius of this ring? (Note: You may assume R � λ. To keep our discussion simple, we do not
consider the reflections from the top surface of the lens and the bottom of the glass plate.)
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(c) [1 pt] In the class we discussed single-slit diffraction only for a slit, but a similar result holds
when light bends around a straight, thin object such as a strand of hair or metal wire. Suppose
that a He–Ne laser of wavelength λ = 632.8 nm illuminates a strand of hair, and a diffraction
pattern appears on a screen at distance L = 2.5 m. If the first dark fringes on either side of
the central bright spot are ∆x = 4.8 cm apart, how thick is this strand of hair? Describe how
manufacturers of metal wire (or any other products with small dimensions) can use this idea to
continuously monitor the thickness of their product. Use diagrams if desired.

• (a) 1
f1

= 1
p1

+ 1
i1
→ 1

−15 = 1
10 + 1

i1
→ i1 = −6 cm. Then, with p2 = −i1 + 12 = 18 cm, 1

f2
=

1
p2

+ 1
i2
→ 1

12 = 1
18 + 1

i2
→ i2 = 36 cm, indicating that the image is real. From Eqs.(34-6) and (34-

11) of Halliday & Resnick, the overall laternal magnification is m = m1m2 =
(
− i1
p1

)(
− i2
p2

)
=(

−−6
10

) (
−36

18

)
= −1.2, which means that the image is inverted with respect to the original.

• (b) For the bright Newton’s rings, the path difference should be 2d = 2
(
R−
√
R2 − r2

)
=

2

[
R−R

(
1− r2

R2

)1/2
]
' r2

R =
(
m+ 1

2

)
λ
n3

, which is very much similar to Eq.(35-36) of Halliday

& Resnick. Hence, for the third bright ring (m = 2), r =
√

5
2 ·

Rλ
n3

, where n3 is either 1.0 or 1.3.

• (c) From Eq.(36-3) of Halliday & Resnick, a = mλ
sin θ '

mλ
tan θ → a = λ

∆x/2L .

4. (a) [1 pt] What are the kinetic energy K (in MeV), the total energy E (in MeV), and the
momentum p (in MeV/c) for an electron moving at speed v = 0.99c ?

(b) [1 pt] Near the top of the Earth’s atmosphere, 120 km above sea level, a pion is created when
an incoming high-energy cosmic ray particle collides with an atomic nucleus. The pion has a
total energy E = 1.4×105 MeV and descends vertically downward. If measured in a frame fixed
with respect to the Earth, what altitude above sea level do you expect the pion to reach before
it decays? (Note: The rest energy of a pion is 139.6 MeV. In a reference frame in which they are
at rest, pions decay with an average lifetime of 26 ns. Ignore any general relativistic effects.)

(c) [2 pt] When a beam of X-rays of wavelength λ is directed onto a target of carbon, the
scattered X-rays at an angle φ contain a range of wavelengths with two prominent intensity
peaks at λ and λ′ (see figure; λ′ > λ). (i) Using the relativistic conservation of energy and
momentum, derive the Compton shift formula, ∆λ = λ′ − λ = h

mec
(1− cosφ). (ii) Explain why

we still observe the peak at the incident wavelength λ when φ is much larger than 0◦.
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• (a) With γ = 1√
1−β2

, E = γmec
2 = γ × 0.511 MeV, K = (γ − 1)mec

2 = (γ − 1)× 0.511 MeV,

and p = γmev = γmec
2(v/c2) = γmec

2(β/c) = γ × 0.511 MeV/c× 0.99.

• (b) From γ = E
mπc2

, ∆t = γ∆t0 and v = βc = c
√

1− 1
γ2
' c.

• (c) The relativistic energy and momentum conservation states that h
λ = h

λ′ +
(
Ee
c −mec

)
, hλ =

h
λ′ cosφ+ pecos θ, and 0 = h

λ′ sinφ− pesin θ. The first equation gives
(
Ee
c

)2
=
(
h
λ −

h
λ′ +mec

)2
=

p2
e + m2

ec
2, while the second and third equations are combined to yield p2

e =
(
h
λ −

h
λ′ cosφ

)2
+(

h
λ′ sinφ

)2
. Rearranging, one can acquire p2

e =
(
h
λ −

h
λ′ +mec

)2−m2
ec

2 =
(
h
λ −

h
λ′

)2
+2mec

(
h
λ −

h
λ′

)
,

and p2
e =

(
h
λ −

h
λ′

)2
+ 2h2

λλ′ −
2h2

λλ′ cosφ. Equating the last two equations leads to the desired for-

mula, λ′ − λ = h
mec

(1 − cosφ). For details — especially about the remaining peak at λ — see
Chapter 38-3 of Halliday & Resnick.

5. (a) [1 pt] An electron travels to the right towards a thin tube shown in the figure below in
which a one-dimensional finite potential well has been set up with voltages V1 < 0 and V2 = 0.
The electron is then trapped in the well after losing energy, and is now in its ground state.
The figure in the middle shows the energy-level diagram with the non-quantized region starting
at E4 = 450 eV. Shown on the right is the observed absorption spectrum of the ground-state
electron, indicating the wavelengths of light it can absorb in transitions from this initial state
via a single-photon absorption: λa = 14.588 nm and λb = 4.8437 nm, and any wavelength less
than λc = 2.9108 nm. Find the energy of the electron’s first excited state.

(b) [2 pt] The energy states of an electron within an atom can be split due to the interaction
of the electron’s spin and the magnetic fields inside the atom. Here we discuss two examples.
(Note: For both questions, you are welcome to make use of the convenient constant introduced
in the textbook, the Bohr magneton µB = e~

2me
= 9.3× 10−24 J/T = 5.8× 10−5 eV/T.)
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(i) First, we consider the famous yellow light from an excited sodium atom as it transitions
from (n, l) = (3, 1) to (n, l) = (3, 0). The yellow light is actually composed of two closely
spaced spectral lines called the sodium doublet, λ1 = 589.0 nm and λ2 = 589.6 nm. This is
because the excited state at (n, l) = (3, 1) is in fact split into two levels depending on whether
the electron’s spin magnetic moment ~µs is parallel or antiparallel to the internal magnetic field
~B1 associated with the electron’s orbital motion. Find the effective strength of this internal
magnetic field, B1.

(ii) Now we consider a hydrogen atom in its ground state. Just like an electron, a proton (a
hydrogen nucleus) is a charged particle and has a spin magnetic dipole moment, so it produces
a magnetic field around itself, which we call ~B2. The electron’s ground state at (n, l) = (1, 0)
is then split into two levels depending on whether the electron’s spin magnetic moment ~µs
is parallel or antiparallel to the internal magnetic field ~B2 associated with the proton’s spin.
When an electron transitions between these two closely spaced energy levels, it can absorb or
emit light of λ3 = 21 cm. Find the effective strength of this internal magnetic field, B2.

• (a) hc
λa

= E2 − E1, hc
λb

= E3 − E1, hc
λc

= E4 − E1 → E2 = E1 + hc
λa

= E4 − hc
λc

+ hc
λa

.

• (b-1) From Eqs.(32-24), (32-27), (40-13) and (40-22) of Halliday & Resnick, ∆E = hc
λ1
− hc

λ2
=

2~µs · ~B1 = 2µs,zB1 = 2µBB1, which gives B1 ' 18 T.

• (b-2) ∆E = hc
λ3

= 2~µs · ~B2 = 2µs,zB2 = 2µBB2, which gives B2 ' 5.1× 10−2 T.

6. (a) [1 pt] Throughout the semester we discussed many examples in which concepts in classical
physics are utilized in contemporary research or in explaining daily phenomena. In this regard,
four of your peers presented their term projects at the end of the semester. Describe the key
idea of one of the presentations you found interesting. A paragraph of at least 3-4 sentences is
expected to clearly convey the core physics idea of his/her term project. Use diagrams if desired.
If you were one of the presenters, please choose someone else’s.

(b) [1 pt] We also discussed how one can speedily gain insights into a physical phenomenon,
by using techniques such as order-of-magnitude estimation and/or dimensional analysis. Invent
and solve your own order-of-magnitude estimation problem. Start with a paragraph of at least
2-3 sentences to clearly describe the problem setup. Make a physically intuitive, yet simple
problem so that you can explain your problem and solution to a fellow physics major student
in ∼3 minutes. Use diagrams if desired. Do not plagiarize another person’s idea.

• (a) See the student presentation slides in Lecture 14-2 that include the collection of term
project presentations by four students, and their video recordings on eTL.

• (b) See also the class slides for Lecture 13-2 that include many example problems, and the
grading guideline.
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