
Physics II (Fall 2023): Midterm Exam Solution

Oct. 20, 2023

[total 20 pts, closed book, 90 minutes]

1. (a) [1 pt] Two small conducting balls of equal massm = 6.0 g and equal charge q are suspended
from massless, nonconducting cords of length L = 120 cm (see figure). If the separation between
the balls is x = 4.0 cm, determine |q|. You may assume that θ — the angle that the cord makes
with the vertical — is so small that tan θ can be approximated by sin θ. Then, explain what
would happen if one of the balls were instantly discharged (e.g., if it lost q to the ground).

(b) [2 pt] An electron of mass m and charge e is constrained to move along the symmetry axis of
a nonconducting ring of radius R on which positive charge q is uniformly distributed. Find the
electric field (magnitude and direction) at the electron’s position z (see figure) by (i) explicitly
integrating the differential electric field, ~E =

∫
d ~E, and by (ii) first finding the electric potential

and then differentiating V . Finally, show that when the electron is near the center of the ring
(z � R), it oscillates through the center. Find the period of these small oscillations. (Note: You
are asked to first derive the electron’s equation of motion explicitly. But then, you may utilize
the fact that the equation of motion in the form of z̈(t) = −ω2z(t) depicts an oscillatory motion
of angular frequency ω.)

• (a) mg tan θ ' mg · x/2L = 1
4πε0

q2

x2
.
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• (b-1) Ez =
∫
dE cos θ = 1

4πε0

∫ 2π
0

zλRdθ
(z2+R2)3/2

= 1
4πε0
· qz

(z2+R2)3/2
as in Eq.(22-16) of Halliday &

Resnick. Meanwhile, V =
∫
dV = 1

4πε0

∫ 2π
0

λRdθ
(z2+R2)1/2

= 1
4πε0
· q

(z2+R2)1/2
. Thus, Ez = −∂V

∂z =
1

4πε0
· qz

(z2+R2)3/2
, which is equal to what we found earlier.

• (b-2) For z � R, the force on the electron becomes Fz = mz̈ = −eE ' − 1
4πε0
· eqz
R3 for z > 0, in

which the minus sign implies that the force is towards the center. Thus, T = 2π
ω = 2π

√
4πε0mR3

eq .

2. (a) [2 pt] A long conducting rod of radius R = 1.2 mm and length L = 20 m is inside a long,
thin-walled coaxial conducting cylindrical shell of radius 10R (see figure below for a section of
this coaxial system). The net charge on the rod is q1 = 3.2 × 10−12 C, and that on the shell is
q2 = −2 q1. Determine the electric field ~E (magnitude and direction) at distance r = 5R and
20R from the symmetry axis. What is the charge on the interior and exterior surface of the
shell? (Note: With L� R, we neglect any fringing effect.)

(b) [1 pt] A sphere of uniform charge density ρ (negative charge, i.e., ρ < 0) and radius R has
within it a spherical cavity of radius R1 whose center is at ~d as shown in the figure below (~d
originates from the center of the sphere, O, and points to the center of the cavity, O1). Using
Gauss’ law and the principle of superposition, show that the electric field inside the cavity is
uniform and can be written as ~E = ρ

3ε0
~d.

• (a) ~E(R<r<10R) = qenc/L
2πε0r

r̂ = q1/L
2πε0r

r̂ and ~E(r>10R) = (q1+q2)/L
2πε0r

r̂. Inside the conducting shell,

~E(10R−ε< r< 10R+ε) = 0 =
(q1+q2,int)/L

2πε0r
r̂, which therefore yields q2,int = −q1 = q2,ext .

• (b) From Eq.(23-20) of Halliday & Resnick, the electric field ~E at an arbitrary point inside
the cavity (with its position vector denoted as ~r originating from O, or as ~r1 originating from

O1) is ~E(~r) = ρ
3ε0

~r + (−ρ)
3ε0

~r1 = ρ
3ε0

(~r1 + ~d) + (−ρ)
3ε0

~r1 = ρ
3ε0

~d.
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3. (a) [1 pt] Positive charge q is uniformly distributed throughout the volume of a nonconducting
sphere of radius R. Using Gauss’ law, find the electric field as a function of distance r from the
sphere’s center, ~E(r), both inside and outside R. Then, by direct integration find the electric
potential V (r), both inside and outside R, while taking V (∞) = 0. Sketch V (r). What is the
potential difference between the center of the sphere and the surface of the sphere?

(b) [2 pt] A metal sphere of radius a and charge q (> 0) is on an insulating stand at the center of
a larger, spherical metal shell of radius b and charge −q (see figure). Find the electric field as a
function of distance r from the sphere’s center, ~E(r), for all values of r (0 < r <∞). Calculate
and sketch V (r), while taking V (∞) = 0. What is the potential difference Vab between the

spheres? Finally, show that the capacitance of this two-sphere system is C = 4πε0

(
ab
b−a

)
.

[For an extra +0.5 point] Using your findings above, verify that the following equality holds for
the energy stored in the electric field between the spheres: 1

2CV
2
ab =

∫
V

1
2ε0 {E(r)}2 dV. (Note:

In the class, we discussed this equality for the case of a parallel-plate capacitor. You may utilize∫
V f(r)dV =

∫ b
a f(r)4πr2dr for a spherically symmetric function f(r) and volume V.)

• (a) From Chapter 23-6 of Halliday & Resnick, ~E(r>R) = 1
4πε0

q
r2
r̂ and ~E(r<R) = 1

4πε0
qr
R3 r̂.

Integrating, we get V(r>R) = −
∫ r
∞

1
4πε0

qdr′

r′2 = 1
4πε0

q
r and V(r<R) = −

∫ R
∞

1
4πε0

qdr′

r′2 −
∫ r
R

1
4πε0

qr′dr′

R3 =

1
8πε0

q
R

(
3− r2

R2

)
. Hence, we reach V (0)− V (R) = 1

8πε0
q
R .

• (b-1) ~E(r<a) = ~E(r>b) = 0 while ~E(a<r<b) = 1
4πε0

q
r2
r̂. Integrating, V(r>b) = 0, V(a<r<b) =

q
4πε0

(
1
r −

1
b

)
, and V(r<a) = q

4πε0

(
1
a −

1
b

)
, which gives Vab = q

4πε0

(
1
a −

1
b

)
. Meanwhile, C =

4πε0

(
ab
b−a

)
can be found by following the steps that lead to Eq.(25-17) of Halliday & Resnick.

• (b-2) Thus, 1
2CV

2
ab = 1

2 ·4πε0
(

ab
b−a

)
·
[

q
4πε0

(
1
a −

1
b

)]2
= q2

8πε0

(
1
a −

1
b

)
, while

∫
V

1
2ε0 {E(r)}2 dV =∫ b

a
1
2ε0

(
1

4πε0
q
r2

)2
4πr2dr = q2

8πε0

(
1
a −

1
b

)
.

4. (a) [2 pt] In the circuit below, the resistances are R1 = 10 kΩ, R2 = 20 kΩ, the ideal battery
has an emf of E = 30 V, and the capacitor of C = 0.40µF is uncharged. (i) When the switch
is closed, what is the current in R1 and R2 at that instant, respectively? (ii) A long time later
(i.e., after a steady state has been reached), what is the current in R2? (iii) Long after the
steady state has been reached, the switch is opened at time t0. What is the current in R2 at
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t = t0 + 4.0 ms? (Note: For (iii), you are first asked to explicitly set up and solve the differential
equation for the time variation of the charge q on the capacitor plates.)

(b) [2 pt] To understand why metals such as copper obey Ohm’s law, we consider a model of the
conduction process at the atomic level. Here we assume that the conduction electrons are free to
move in the metal, and that they collide not with one another, but only with the metal atoms.
The black lines in the figure below show a conduction electron of mass m and charge e moving
from point A to B in the presence of an external electric field ~E, making four collisions along
the way. The gray lines from A to B′ show what the electron’s path would have been without
the electric field. (Note: The drift velocity of the electron, vd, shown in this figure is greatly
exaggerated.) (i) Using this figure and variables such as the mean free time, τ , the number of
electrons per unit volume, n, and the current density, ~J , show that the resistivity of the metal
is written as ρ = m

e2nτ
. (ii) Explain why this equation can be taken as a statement that metals

obey Ohm’s law. Also use the equation to explain the temperature dependence of the resistivity
of a conductor.

• (a-1) At the instant the switch is closed, I1 = 3.0×10−3A and I2 = 0. After a steady state has
been reached, I2 = I1 = E

R1+R2
= 1.0 × 10−3A, which gives the charge stored on the capacitor

q0 = CV2 = C(I2R2).

• (a-2) I(t) = dq(t)
dt = −

(
q0
R2C

)
e−(t−t0)/R2C can be found by following the steps that lead to

Eq.(27-40) of Halliday & Resnick, which gives I(t0 + 4.0 ms) = 6.1× 10−4A.

• (b) vd = J
ne = eEτ

m → ρ = E
J = m

e2nτ
. Since vd is much smaller than the effective speed of

the electron, τ is hardly affected by the field. Therefore, ρ = m
e2nτ

is independent of the field
strength, proving that metals obey Ohm’s law. The increase in resistivity with temperature is
due to an increase in the collision rate, hence a decrease in τ . For details, see Chapters 26-4 and
26-5 of Halliday & Resnick.

5. (a) [1 pt] A beam of electrons — each with mass m, charge e, and kinetic energy K —
emerges from a window at the end of an accelerator tube. A metal plate at distance d from
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this window is perpendicular to the direction of the emerging beam (see figure). Treating the
problem nonrelativistically, find the orientation and minimum strength of the uniform magnetic
field ~B that must be applied in order to prevent the beam from hitting the plate.

(b) [2 pt] The figure below depicts a conductor carrying current I to the left, immersed in a
uniform magnetic field ~B that is pointing outward and perpendicular to this page. The conductor
has three segments: (i) a straight segment of length L perpendicular to the plane of the page, (ii)
a semi-circular segment of radius R, and (iii) another straight segment of length L parallel to
the x-axis. What is the total magnetic force acting on this conductor (magnitude and direction)?

• (a) With the magnetic field B pointing out of the page, r = mv
eB =

√
2mK
eB < d, from Eq.(28-16)

of Halliday & Resnick. Thus, the minimum strength of the magnetic field is
√
2mK
ed .

• (b) ~F =
∫
Id~L× ~B =

∫ π
0 I(Rdθ)B sin θ ŷ + ILB ŷ = (2R+ L)IB ŷ.

6. (a) [2 pt] Consider a magnetic dipole, that is, a single circular current loop of radius R and
current I. Find the the magnetic field (magnitude and direction) at point P on the symmetry
axis of the loop, at distance z from the center of the loop (see figure), by explicitly integrating
the differential magnetic field, ~B =

∫
d ~B. Explain which expressions your answer reduces to (i)

when P is at the center of the loop, and (ii) when P is very far from the loop (z � R). (Note:
For (ii), you are asked to define and include the magnetic dipole moment ~µ in your expression.)
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(b) [2 pt] The figure below shows a cross-section of a long cylindrical conductor of radius R
containing a long cylindrical hole of radius R1. The central axes of the cylinder and the hole
are parallel and are distance d apart, and current I is uniformly distributed over the tinted,
conducting area.

Now consider a straight line
←−→
OO1 in this cross-section, connecting the central axis of the cylinder,

O, and the central axis of the hole, O1, and extending beyond both points. (i) Using Ampere’s

law and the principle of superposition, show that the magnetic field along
←−→
OO1 inside the hole

(i.e., the red line segment in the figure) is uniform with a strength | ~B| = µ0Id
2π(R2−R2

1)
. (ii) Do a

sanity check by discussing the two special cases: R1 = 0, and d = 0.

• (a) Bz =
∫
dB sin θ = µ0

4π

∫ 2π
0

IR·Rdθ
(z2+R2)3/2

= µ0IR2

2(z2+R2)3/2
as in Eq.(29-26) of Halliday & Resnick.

When z = 0, the equation reduces to Eq.(29-9) of Halliday & Resnick with φ = 2π; when z � R,
the equation becomes Eq.(29-27) of Halliday & Resnick.

• (b) From Eq.(29-20) of Halliday & Resnick, the magnetic field strength | ~B| at point P on the
red line segment at distance r from O is

| ~B(r)| =



µ0I

(
R2

R2−R2
1

)
2πR2 · r +

µ0I

(
R2
1

R2−R2
1

)
2πR2

1
· (d− r), if r < d,

µ0I

(
R2

R2−R2
1

)
2πR2 · r −

µ0I

(
R2
1

R2−R2
1

)
2πR2

1
· (r − d), if r > d,

which yields | ~B| = µ0Id
2π(R2−R2

1)
regardless. If R1 = 0, then the equation simply reduces to Eq.(29-

20) of Halliday & Resnick. If d = 0, then it becomes B = 0 inside the hole, obviously.
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