
Mathematical Physics I (Fall 2025): Homework #3 Solution

Due Oct. 17, 2025 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 4, Problem 7.28

(Note: For Problem 7.28, you may want to prove and utilize the findings in Problem 7.27. Note
the meaning of the subscripts next to the partial derivatives from Boas Chapter 4, Section 1 in
case you did not read it. Prove further that the resulting formula is the familiar cp − cv = nR
found in e.g., Schroeder or Halliday & Resnick, where n is the number of moles of gas present
and R is the gas constant.)

• Replacing x → T , y → v, z → p and u → s gives
(
∂s
∂T

)
p

=
(
∂s
∂T

)
v

+
(
∂s
∂v

)
T

(
∂v
∂T

)
p
, thus cp =

cv + T
(
∂s
∂v

)
T

(
∂v
∂T

)
p
. With

(
T∂s
∂v

)
T

= p and
(
∂v
∂T

)
p

=
(
∂(nRT/p)

∂T

)
p

= nR
p , you find cp − cv = nR.

2. Boas Chapter 4, Problem 9.5

• From Thm.(9.14) of Boas Chapter 4, we write F = 4x2 + y2 + z2 + λ(2x + 3y + z). Then,
∂F
∂x = 8x + 2λ = 0, ∂F

∂y = 2y + 3λ, and ∂F
∂z = 2z + λ = 0. Combining the equations with the

constraints 2x+ 3y + z = 11 gives λ = −2 and (x, y, z) = (1
2 , 3, 1).

3. Boas Chapter 4, Problem 12.15

(Note: For Problem 12.15, you may want to carefully review Boas Chapter 4, Section 12. You
are also asked to prove the first equality,

∫∞
0 e−axsinkx dx = k

a2+k2
. The relations you prove

here will be particularly useful later in Boas Chapter 8, Section 8, as we discuss the Laplace
transform.)

• The first equality can be readily derived either through integration by parts or by the method
demonstrated in Example 3 of Boas Chapter 8, Section 8. The second and third equations can
be proven using Eq.(12.9) from Chapter 4, Section 12, as illustrated in Example 4 of Chapter
8, Section 8.
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4. Boas Chapter 5, Problem 4.16

(Note: For Problem 4.16, also find ∂(u, v)/∂(x, y), for which you may want to prove and utilize
the first theorem in Problem 4.18.)

• From Eq.(4.8) with x = 1
2(u2 − v2) and y = uv,

J =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣u −v

v u

∣∣∣∣∣∣ = u2 + v2,

whereas, from the findings in Problem 4.18, the other Jacobian of variables u, v with respect to
x, y is ∣∣∣∣∣∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
−1

=
1

u2 + v2
=

1

2(x2 + y2)1/2
.

5. Boas Chapter 5, Problem 6.27

(Note: For Problem 6.27, you will first have to show that the intervals of integration for u and
v are [0, 1] and [0, 1 + u], respectively. See the hint in Problem 4.20 for more information.)

• From Eq.(4.8) with x = v
1+u and y = uv

1+u ,

J =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−v

(1+u)2
1

1+u

v
(1+u)2

u
1+u

∣∣∣∣∣∣ = − v

(1 + u)2
,

which makes the integral∫ 1

0
dx

∫ x

0

(x+ y)ex+y

x2
dy =

∫ 1

0
du

∫ 1+u

0

vev

(v/1 + u)2
|J |dv =

∫ 1

0
du

∫ 1+u

0
evdv

= [e1+u − u]

∣∣∣∣1
0

= e2 − e− 1.

6. Boas Chapter 6, Problem 3.13

(Note: For Problem 3.13, tackle the problem in two different ways, first by writing in ordinary
vector notation, then by writing in tensor notation as described in Boas Chapter 10, Section
5. For the tensor approach, you may utilize the result from Problems 5.10 and 5.11 of Boas
Chapter 10.)

• Letting B×C = D and C×A = E, Thm.(3.3) and (3.8) together give [(A×B)×D] ·E =
−[D×(A×B)] ·E = −[XXXX(D ·B)A−(D ·A)B] ·E = (D ·A)(B ·E) = [A ·(B×C)][B ·(C×A)] =
[A · (B×C)]2 = (ABC)2.

• Alternatively, again with B×C = D and C×A = E, writing in tensor notation and then using
Eqs. (5.8), (5.11) and (5.12) of Boas Chapter 10, {[(A×B)×D] ·E}n = [(A×B)×D]nEn =
εnip(A×B)iDpEn = εnip(εijkAjBk)DpEn = εipnεijkAjBkDpEn = (δpjδnk−δpkδnj)AjBkDpEn =
(AjDj)(BkEk)−(AjEj)(BkDk) = (AjεjlmBlCm)(BkεklmClAm)−hhhhhhh(AjεjlmClAm)

hhhhhhhh(BkεklmBlCm) =
(εklmAkBlCm)2 = [A · (B×C)]2 = (ABC)2
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7. Boas Chapter 6, Problem 6.16

• Using Eq.(9.6) of Chapter 4 and Eq.(6.2) of Chapter 6, we write F = dφ
ds + λ(a2 + b2 + c2) =(

∂φ
∂xa+ ∂φ

∂y b+ ∂φ
∂z c
)

+ λ(a2 + b2 + c2). Then, ∂F
∂a = ∂φ

∂x − 2λa = 0, ∂F
∂b = ∂φ

∂y − 2λb = 0,

∂F
∂c = ∂φ

∂z −2λc = 0, and a2 + b2 +c2 = 1. Combined, λ = ± |∇φ|2 and u = (a, b, c) = ∇φ
2λ = ± ∇φ|∇φ| .

With Eq.(6.4), you get the extremum values of dφ
ds as ∇φ · u = ± (∇φ)2

|∇φ| = ±|∇φ|.

8. Boas Chapter 6, Problem 9.7

(Note: For Problem 9.7, you are asked to prove and utilize the findings in Problem 9.6.)

• The area inside the elliptical curve can be written with the parametrization x = a cos θ and
y = b sin θ as∫∫

dxdy =
1

2

∮
(xdy − ydx) =

1

2

∮
[a cos θ · b cos θdθ − b sin θ · (−a sin θ)dθ]

=
1

2

∫ 2π

0
ab(sin2θ + cos2θ) dθ = πab.

9. (a) Review Boas Chapter 6, Example 7.2, thus prove Eq.(7.6) or Eq.(f) in p.339. You are
also asked to prove the identity by explicitly working with the components, i.e.,

∇ · (φV) =
∂(φVx)

∂x
+
∂(φVy)

∂y
+
∂(φVz)

∂z
= ...

(b) Review how Gauss’s law ∇ · E = ρ
ε0

is acquired from Coulomb’s law in Boas Chapter 6,
Section 10, where E is the electric field, ρ is the volume charge density, and ε0 is the permittivity
of free space.

(c) Using (a) and (b), show that the energy of a continuous charge distribution is given by

We =
1

2

∫
ρV dτ =

ε0
2

∫
|E|2dτ

for integration over all space, where V is the electric potential. You are first asked to briefly
discuss how one arrived at the term We = 1

2

∫
ρV dτ , and then explicitly prove the second

equality. You may assume that V vanishes at large distance r at least as fast as r−1.

(d) Now, prove Eq.(h) in p.339. You may prove the identity by explicitly working with the
components, i.e.,

∇ · (U×V) =
∂(U×V)x

∂x
+
∂(U×V)y

∂y
+
∂(U×V)z

∂z
= ...

(e) Review how Ampere’s law ∇×B = µ0J is acquired from the Ampere’s circuital law in Boas
Chapter 6, Section 11, where B is the magnetic field, J is the current density, and µ0 is the
permeability of free space.

(f) Using (d) and (e), show that the energy stored in magnetic fields is given by

Wm =
1

2

∫
(A · J)dτ =

1

2µ0

∫
|B|2dτ
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for integration over all space, where A is the magnetic vector potential. You are first asked to
briefly discuss how one arrived at the term Wm = 1

2

∫
(A · J)dτ , and then explicitly prove the

second equality. You may assume that A vanishes at large distance r at least as fast as r−1.

[Adapted from Griffiths, Chapter 7.2]

(Note: The exercises here should sound familiar to most of you as you have begun to study
and explore electromagnetism. If not, you may want to briefly review the classic textbooks
in electromagnetism such as Griffiths or Jackson. If needed, you must reference your sources
appropriately with a proper citation convention, but your answer must still be your own work
in your own words. To access the electronic resources — e.g., academic journals — off-campus
via SNU library’s proxy service, see http://library.snu.ac.kr/using/proxy.)

• (c) One can think of 1
2

∫
ρV dτ as the continuum approximation of We = 1

2

∑
i
qiV (ri) (see

Section 2.4.2 of Griffiths for more information). Then, one gets

We =
1

2

∫
ρV dτ =

ε0
2

∫
V (∇ ·E)dτ =

ε0
2

∫
[−E · (∇V ) +∇ · (VE)] dτ

=
ε0
2

(∫
|E|2dτ +

∮
∂τ

(VE) · ndσ
)
,

where the second term vanishes as the integration is carried out over all space — since it behaves
like (r−1r−2) · r2 = r−1 which tends to 0 as r approaches ∞.

• (f) One can think of 1
2

∫
(A ·J)dτ as the generalization of a energy stored in a current-carrying

loop, 1
2

∮
(A·I)dl, which itself came from Wm = 1

2LI
2 = 1

2I(
∫
B·da) = 1

2I(
∮
A·dl) = 1

2

∮
(A·I)dl

(see Section 7.2.4 of Griffiths for more information). Then, one gets

Wm =
1

2

∫
(A · J)dτ =

1

2µ0

∫
A · (∇×B)dτ =

1

2µ0

∫
[B · (∇×A)−∇ · (A×B)] dτ

=
1

2µ0

(∫
|B|2dτ +

∮
∂τ

(A×B) · ndσ
)
,

where the second term vanishes as the integration is carried out over all space.

10. In the class we discussed the Legendre transformation as one of the examples of a simple
change of variables that is found to be useful in classical mechanics and thermodynamics.

(a) Review the general discussion of a Legendre transformation in Boas Chapter 4, Section 11
by following the procedure step by step from Eq.(11.21) to Eq.(11.27).

(b) In one practical example in classical mechanics, given L(x, ẋ) with dL = ∂L
∂xdx + ∂L

∂ẋdẋ =
∂L
∂xdx + pdẋ (note p ≡ ∂L

∂ẋ ), one can find H(x, p) so that dH = ∂L
∂xdx − ẋdp. Find a Legendre

transformation that gives H(x, p). Discuss the meaning of the two functions, L and H, by
identifying them as Lagrangian and Hamiltonian, respectively.
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(c) In another example in thermodynamics which we briefly examined but left for your exercise,

given U(S, V ) with dU = ∂U
∂S dS + ∂U

∂V dV = TdS − PdV (note T ≡
(
∂S
∂U

)−1
and P ≡ −∂U

∂V ),
one can find H(S, P ) so that dH = TdS + V dP . Find a Legendre transformation that gives
H(S, P ). Discuss the meaning of the two functions, U and H, by identifying them as (internal)
energy and enthalpy, respectively.

(d) Given dU = TdS − PdV , perform a different Legendre transformation to find another
useful function related to energy, F (T, V ), known as the Helmholtz free energy. Finally, by
performing Legendre transformations on both terms in dU , find yet another function related to
energy, G(T, P ), known as the Gibbs free energy.

(Note: You may want to briefly review the textbooks in classical mechanics such as Thornton &
Marion, and in statistical mechanics such as Schroeder or Reif. For (b) and (c), you are simply
asked to come up with 2-3 sentences about how the these quantities are used in the respective
textbooks, without going into all the mechanical or thermodynamical details.)

• (b) One can find H(x, p) = −L + pẋ as in Thornton & Marion Eq.(7.155) with p ≡ ∂L
∂ẋ in

Eq.(7.151).

• (c) H(S, P ) = U + PV in Schroeder Eq.(1.51) with T ≡
(
∂S
∂U

)−1
in Schroeder Eq.(3.4).

• (d) F (T, V ) = U − TS and G(T, P ) = U − TS + PV in Schroeder Eqs.(5.2)-(5.3).
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