Mathematical Physics I (Fall 2025): Homework #2 Solution

Due Oct. 3, 2025 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 3, Problem 5.36

(Note: For Problem 5.36, review the Examples in Boas Chapter 3, Section 5 in case you have
not done it yet. Find the most relevant example and use the method depicted in there.)

e The line found in Problem 5.11 is r = (4i — j 4+ 3k) + (i — 2k)¢. To determine the distance
between P(3,2,5) and this line, let @ be a point on the line, say Q(4,—1,3) and u be the
unit vector along the line. Then, from Figure 5.7 and the accompanying equations, the distance
between P and the line is |PQ x u| = |(1, =3, —2) x —(1,0,—2)| = |%(6,0, 3)| = 3.

V5
2. Boas Chapter 3, Problem 6.21

(Note: For Problem 6.21, find the inverse with two different methods — using Eq.(6.13) of Boas
Chapter 3 and using the Gauss-Jordan matrix inversion procedure. Compare your results with
the one found with a computer.)

e From Eq.(6.13),

1 0 2 -1 -2 3 1 -1 2 2
M=[2 -1 0] - det(M)=5and C=|2 -1 —1| — z\rl:g —2 -1 4
1 1 1 2 4 -1 3 -1 -1
& Wolfram
| inverse ({1,0.242,1,05(1,1,1)} |
Tk NATURAL LANGUAGE | fFa MATH INPUT EH EXTENDED KEYBOARD 332 EXAMPLES ~# UPLOAD >4 RANDOM
Input
1 0 2y-1
[2 -1 0]
111
Result Decimal form

-1 2 2
1[72 -1 4|
5

3 -1 -1



3. Boas Chapter 3, Problem 8.10
e Using the Wronskian in Eq.(8.5), you find

T e xe x e xe 1
1 (1 — 7) e’ xe® 2
W=11 e e"+ze”|=0 (1-1)e¢" xer =2z z 2| = (x—=2)e*" #0
0 e* 2e"+ xe” 0 e’ 2e" + xe” ¢ (2+z)e

% WolframAlpha

wronskian {x, e"x, xe*x} =]
£k NATURAL LANGUAGE | ff5 MATH INPUT B EXTENDED KEYBOARD 33 EXAMPLES 4 UPLOAD 34 RANDOM
Input interpretation
X
Wronskian [ with respect to x
e x
Result
2 (x—2)

4. Boas Chapter 3, Problem 8.24

e Using Eq.(8.9),
’6 - A 3

5 _Q_A‘ =(A-T)(A+3)=0,

and A\; = 7 gives the solution ry = (3i 4+ j)t while Ay = —3 gives ro = (i — 3j)s.

5. Boas Chapter 3, Problem 9.17

e (c) A= A" and B = Bf — from a complex counterpart of Eq.(9.11), (AB)' = BfAT =
BA = AB holds (i.e., AB is Hermitian) if and only if [4, B] = 0.

o(d) A~ = Atand B~' = B! — from Eq.(9.12), and from a complex counterpart of Eq.(9.11),
(AB)™! = B~'A~! = BtAt = (AB)f holds (i.e., AB is unitary).

6. Boas Chapter 3, Problem 11.44

e From the characteristic equation, two eigenvalues Ay = —7 and Ay = 3 appear that correspond
: _ 1 —3—44 1 5 . .. .
to eigenvectors ry = 5 ( - Z) and ro = 5 ( 3_4,L»), respectively. Then it is straightforward

to show that

- 1 (3—4i -5 -2 344i\ (-3-4i 5 A0
1 _ —— =
voHU = 50< —5 —3—42') (3—4@' —2)( 5 3—4z'> <o )\2>

yields the diagonal matrix of eigenvalues.



% WolframAlpha

(-1/50) * {{3-4i, -5}, {-5, -3-4i}} * {{-2, 3+4i}, {3-4i,-2}} * {{-3-4i, 5}, {5, 3-4i}} a

#F NATURAL LANGUAGE Jfs MATH INPUT f# EXTENDED KEYBOARD 33 EXAMPLES # UPLOAD 3¢ RANDOM

Assuming "/ is referring to math | Use "-1/50" as referring to math instead

Assuming i is the imaginary unit | Use i as a variable instead
Input

[ 1[3741' -5 [72 3+4i0 [73741‘ 5
S0 -5 -3-4i)/l3-4i -2 )l 5 3-4

Result

(7 3)

7. Boas Chapter 3, Problem 11.60

(Note: For Problem 11.60, you will need to first prove then utilize the findings in Problem 11.57,
or Eq.(11.36).)

e With C' = % (3 )and D=(}3) = (AOI )?2> from Eq.(11.10),

W2 —70~*MC +6C1C

— T\ +6 0 0
0 MN—Th+6) 7

C™HM?* —TM +61)C =

2
D? 7D+ 61 = (Al

which indicates that M2 — 7M + 61 = C(D? — 7D +61)C~! = 0.

8. Boas Chapter 3, Problem 12.9 (for 12.7)

(Note: For Problem 12.9, consider only Problem 12.7. Plot the surface using a computer, in
both the original coordinate system and the principal axes coordinate system. Also, find the
shortest distance from the origin to the surface, and identify the name of the surface. Examples
of quadric surfaces in 3 dimensions include the following, as discussed in the class.)

elliptic hyperbolic
paraboloid paraboloid

hyperboloid of hyperboloid of

one sheet two sheets elliptic cone

ellipsoid

e As in Example 2 of Boas Chapter 3, Section 12,

1-X 2 2
=60 > | 2 3-X 0 |=0={(1-XN(B-X\)-8(3-21\),

12 2
(z,9,2) 12 3 0
2 0 3 2 0 3-2A

INEENSI



from which A = 5,3, —1 are acquired. Therefore, the new quadric surface equation relative to
the principal axes becomes

/

50 0 x 2 22
€ Z
(x/7y/7zl) 0 3 0 y/ =60 — E—i—gio—iﬁo =1
00 -1 2

. . . . 1
which represents a hyperboloid of one sheet The corresponding eigenvectors r; = % (%),

0 -2
1 (—11> and r3 = - < ! ) make up the rotation matrix C'. Then it is straightforward to

2= N
show that
L(V2OV2V2\ 12 2 V2 0 -2 M 00
C—lMcz6 0 -3 V3|23 0](v2 —vV3 1 |=[0 X 0
-2 1 1 2 0 3 V2 V31 0 0 X3

And finally, at (z',y/,2") = (£2v/3,0,0), the surface has the shortest distance to the origin,

d = 2v/3.

& WolframAlphz % Wolfram

XA243yA243242+4xy+4x2=60 B | | 5x"2+3y*22°2=60 =]

9. In this problem we consider the spin matrices in quantum mechanics that describe particles
of various spins in three dimensions.

(a) First, work out Problem 6.6 in Boas Chapter 3. Here, for the Pauli spin matrices introduced
to describe particles of spin 1/2,

0 1 0 —i L0

you will first need to show that oo, = d1lo + i) €07, where 0, and € are defined in

l
Eq.(9.4) of Boas Chapter 3 and in Eq.(5.3) of Chapter 10, respectively, and I, is the n x n
unit matrix. Then, it naturally follows that [0}, ok] = 0jo), — oroj = 2i ) €07, which is called
l




the fundamental commutation relation for angular momentum matrices (or [0, 0k = 2io; if
J,k,l=1,2,3 or a cyclic permutation thereof).

(b) Briefly discuss how these spin matrices are introduced and used in quantum mechanics.

Prove that 0., 0y and o, are both Hermitian and unitary. Show also that o2 = > 0]2. = 315.
J

(c) Now, using the 3 x 3 spin matrices that can describe particles of spin 1,

L (010 . (0 -1 0 10 0
My=M=—[10 1|, M,=M, = 1 0 1|, M,=Ms=[0 0 0],
' 1\/5010 ’ 2\/501 0 o 00 -1

show that [M;, My] = ’LzejklMl and M2 = ZMQ = 2I3.

(Note: You may want to briefly review the textbooks in quantum mechanics such as Griffiths &
Schroeter. For (b), you are simply asked to come up with 2-3 sentences about how the matrices
are used, without diving into laborious quantum mechanical derivations. If needed, you must ref-
erence your sources appropriately with a proper citation convention, but your answer must still
be your own work in your own words. To access the electronic resources — e.g., academic jour-
nals — off-campus via SNU library’s proxy service, see http://library.snu.ac.kr/using/proxy.)

e (a) By combining ooy, = ioy (if j, k,1 = 1,2,3 or a cyclic permutation thereof) and (0;)? = I
(where Iy is the 2 x 2 unit matrix), we can easily show oo, = dpl2 + 1) €507
!

¢ (¢) You may compare your answer from direct matrix multiplication with a computer solution.

SOURCE CODE RESULTS
numpy as np .Checking commutation relations...!

[[ 0.41.7 0.40.5 0.40.3]
=np.multiply(1./np.sqrt(2), [[0,1,0],[1,0,1],[0,1,0]]) [0.40.7 0.40.5 0.40.3j]
=np.multiply(1./np.sqrt(2), [[0,-1j,0],[15,0,-15],[0,15,0]1) [0.40.7 0.40. 0.-1.3]]
=[[1,0,0],(0,0,0],[0,0,-1]] [[ 0.41.7 0.40.7 0.40.3]

€. Checking comutation relations...1" o] 0.0 0.1

+0.3 j-0.-1.j

T P ([ 0.+0.3 0.40.70710678] 0.40.j ]
(np.dot(B,C)-np.dot(C,B)) [ 0.40.70710678] 0.40.] 0.+0.707106783]
(np.multiply(1j, A)) [0.40.5 0.40.70710678] 0.40.] 1
(np.dot(C,A)-np.dot(A,C)) [[ 0.40.5 0.+0.70710678] 0.40.] ]
(np.multiply(1j, B)) [ 0.40.70710678] 0.40.j 0.40.707106787]
(QhD) [0.40.5 0.40.70710678) 0.40.j 1]
( he 1g MAZ D) [[ o. 0.70710678 0. ]
(np.dot(A,A)+np.dot(B,B)+np.dot(C,C)) [-0.70710678 0. 0.70710678]

[o. -0.70710678 0. 1]

[[ 0.00000000+0.] ©.70710678+0.] 0.00000000+0.7]

[-0.70710678+0.] ©0.00000000+0.) ©.70710678+0.7]

[ 0.00000000:+0.] -0.70710678+0.] ©.00000000+2.7]]

...Checking MA2...!

[[2.40.7 0.40. 0.40.3]

[0.40.7 2.40.7 0.40.j]

[0.40.] 0.40.7 2.40.3]]

10. In the class we discussed the Gram-Schmidt orthonormalization process for a linear vector
space and for a general vector space.

(a) In Example 6 of Boas Chapter 3, Section 14 — which we briefly discussed in class but left
for you to work through — with an inner product defined as

1
(flg) = / F(@)gla)da.



one can start with the functions f; = 2 (i = 0,1,2,3) and construct a set of orthonormal
polynomials P; that satisfy the orthonormality condition on the interval —1 < x <1,

/ P, (z)dz = dmn

(see also Eq.(8.4) of Chapter 12, but note a different normalization factor). We later identify
this set of functions as the Legendre polynomials. Starting from Eq.(14.10), follow the procedure
step by step and find for yourself the first four members of P;.

(b) Consider a different set of functions defined with a similar inner product as in (a), but over
a shifted interval 0 < x < 1. The orthonormality condition is now given by

/ /
/P P d Z'm—l—l(S

Find the first three members in the set of orthonormal polynomials P/ (the sign’ does not mean
differentiation). We refer to this set of functions as the shifted Legendre polynomials.

(¢) Now, with a new inner product defined as
o0 2 2
(flg) :/ f(x)g(z)e * de, where e™™ is the “weighting” function,
—00

find the first three members in the set of orthonormal polynomials H; that satisfy the orthonor-
mality condition on the interval —oco < z < o0,

/ Hm(m)Hn(x)e*xzdaﬂ = O/ 2!

(see also Eq.(22.15) of Chapter 12). We refer to this set of functions as the Hermite polynomials.

(d) Discuss briefly where the (associated) Legendre polynomials and the Hermite polynomials
appear in quantum mechanics or in other physics research.

) lg,0012

\ /\L —n=3
—= =— —~—n=2
- = = —-n=1
e . n=0

Potential

x x
0 0

[Adapted from Griffiths & Schroeter, Chapter 2.3]

(Note: For (¢), you may simply use the value of the so-called Gaussian integral ffooo e~ dy = NZS
without proof, although it can be easily found using the techniques in Boas Chapter 5, Section



4, or in Problem 9.4 of Chapter 11. The Gaussian integral appears frequently also in elementary
calculus textbooks such as Stewart (Chapter 15.3) or 7]&% (Chapter 14.4). However, all other
integrals such as ffooo 22e~" dx must be evaluated explicitly, for example, by using integration
by parts or the technique in Problem 12.16 of Boas Chapter 4. For (d), you may want to briefly
review the textbooks in quantum mechanics such as Griffiths & Schroeter. Once again, you are
simply asked to come up with 2-3 sentences about how these polynomials are used, not the
detailed physical or mathematical discussions. Astronomy magjors are highly encouraged to look
for the use cases of Legendre polynomials in astrophysics and cosmology.)

e (b-1) Following the notation in Example 6 of Boas Chapter 3, Section 14, but with P/ = e;,
first we find P} =po = fo =1 as ||po||> = fol dr = 1.

e (b-2) Then p; = f1 — F} fol Pifide =x—1- fol zdr = x—3 — therefore P| = 22— 1, because

lIp1l? = fy (z — 1)2dw = & while || P{||? should be 5 = 3.

e (c-1) Again, following the notation in Example 6 of Boas Chapter 3, Section 14, but now with

H; = e;, we find Hy = po = fo =1 as ||po]|* = ffooo e~ dy = VT = doo/7 - 20 - 0L

e (c-2) Then py = f1 — Ho [72 Hofie @dz =2 —1- 1= zve % dx =1z — therefore H; = 2,
o

because ||p1|]? = [ 22 dy = |z (—Le + 17 e’ dy = YT while H,||? should

00 2 2 [e's] 2

—00

be d11y/7 - 21 - 11 = 24/7.

e (c-3) The list of the first few normalized Hermite polynomials are given in Eq.(22.13) of
Chapter 12, or in p.804 (the answer to Problem 22.4 of Chapter 12).



