
Mathematical Physics I (Fall 2025): Homework #2 Solution

Due Oct. 3, 2025 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 3, Problem 5.36

(Note: For Problem 5.36, review the Examples in Boas Chapter 3, Section 5 in case you have
not done it yet. Find the most relevant example and use the method depicted in there.)

• The line found in Problem 5.11 is r = (4i − j + 3k) + (i − 2k)t. To determine the distance
between P (3, 2, 5) and this line, let Q be a point on the line, say Q(4,−1, 3) and u be the
unit vector along the line. Then, from Figure 5.7 and the accompanying equations, the distance

between P and the line is |
−−→
PQ× u| = |(1,−3,−2)× 1√

5
(1, 0,−2)| = | 1√

5
(6, 0, 3)| = 3.

2. Boas Chapter 3, Problem 6.21

(Note: For Problem 6.21, find the inverse with two different methods — using Eq.(6.13) of Boas
Chapter 3 and using the Gauss-Jordan matrix inversion procedure. Compare your results with
the one found with a computer.)

• From Eq.(6.13),

M =

1 0 2
2 −1 0
1 1 1

 → det(M) = 5 and C =

−1 −2 3
2 −1 −1
2 4 −1

 → M−1 =
1

5

−1 2 2
−2 −1 4
3 −1 −1

 .
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3. Boas Chapter 3, Problem 8.10

• Using the Wronskian in Eq.(8.5), you find

W =

∣∣∣∣∣∣
x ex xex

1 ex ex + xex

0 ex 2ex + xex

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x ex xex

0
(
1− 1

x

)
ex xex

0 ex 2ex + xex

∣∣∣∣∣∣ = x

∣∣∣∣(1− 1
x

)
ex xex

ex (2 + x)ex

∣∣∣∣ = (x−2)e2x 6= 0.

4. Boas Chapter 3, Problem 8.24

• Using Eq.(8.9), ∣∣∣∣6− λ 3
3 −2− λ

∣∣∣∣ = (λ− 7)(λ+ 3) = 0,

and λ1 = 7 gives the solution r1 = (3i + j)t while λ2 = −3 gives r2 = (i− 3j)s.

5. Boas Chapter 3, Problem 9.17

• (c) A = A† and B = B† → from a complex counterpart of Eq.(9.11), (AB)† = B†A† =
BA = AB holds (i.e., AB is Hermitian) if and only if [A,B] = 0.

• (d) A−1 = A† and B−1 = B† → from Eq.(9.12), and from a complex counterpart of Eq.(9.11),
(AB)−1 = B−1A−1 = B†A† = (AB)† holds (i.e., AB is unitary).

6. Boas Chapter 3, Problem 11.44

• From the characteristic equation, two eigenvalues λ1 = −7 and λ2 = 3 appear that correspond
to eigenvectors r1 = 1

5
√

2

(−3−4i
5

)
and r2 = 1

5
√

2

(
5

3−4i

)
, respectively. Then it is straightforward

to show that

U−1HU = − 1

50

(
3− 4i −5
−5 −3− 4i

)(
−2 3 + 4i

3− 4i −2

)(
−3− 4i 5

5 3− 4i

)
=

(
λ1 0
0 λ2

)
yields the diagonal matrix of eigenvalues.
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7. Boas Chapter 3, Problem 11.60

(Note: For Problem 11.60, you will need to first prove then utilize the findings in Problem 11.57,
or Eq.(11.36).)

• With C = 1√
5

(
1 −2
2 1

)
and D = ( 1 0

0 6 ) =
(
λ1 0
0 λ2

)
from Eq.(11.10),

C−1(M2 − 7M + 6I)C = C−1M2C − 7C−1MC + 6C−1C

= D2 − 7D + 6I =

(
λ2

1 − 7λ1 + 6 0
0 λ2

2 − 7λ2 + 6

)
= 0,

which indicates that M2 − 7M + 6I = C(D2 − 7D + 6I)C−1 = 0.

8. Boas Chapter 3, Problem 12.9 (for 12.7)

(Note: For Problem 12.9, consider only Problem 12.7. Plot the surface using a computer, in
both the original coordinate system and the principal axes coordinate system. Also, find the
shortest distance from the origin to the surface, and identify the name of the surface. Examples
of quadric surfaces in 3 dimensions include the following, as discussed in the class.)

• As in Example 2 of Boas Chapter 3, Section 12,

(x, y, z)

1 2 2
2 3 0
2 0 3

xy
z

 = 60 →

∣∣∣∣∣∣
1− λ 2 2

2 3− λ 0
2 0 3− λ

∣∣∣∣∣∣ = 0 = {(1− λ)(3− λ)− 8}(3− λ),
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from which λ = 5, 3,−1 are acquired. Therefore, the new quadric surface equation relative to
the principal axes becomes

(x′, y′, z′)

5 0 0
0 3 0
0 0 −1

x′y′
z′

 = 60 → x′2

12
+
y′2

20
− z′2

60
= 1

which represents a hyperboloid of one sheet.1 The corresponding eigenvectors r1 = 1√
3

(
1
1
1

)
,

r2 = 1√
2

(
0
−1
1

)
and r3 = 1√

6

(−2
1
1

)
make up the rotation matrix C. Then it is straightforward to

show that

C−1MC =
1

6

√2
√

2
√

2

0 −
√

3
√

3
−2 1 1

1 2 2
2 3 0
2 0 3


√

2 0 −2√
2 −

√
3 1√

2
√

3 1

 =

λ1 0 0
0 λ2 0
0 0 λ3

 .

And finally, at (x′, y′, z′) = (±2
√

3, 0, 0), the surface has the shortest distance to the origin,
d = 2

√
3.

9. In this problem we consider the spin matrices in quantum mechanics that describe particles
of various spins in three dimensions.

(a) First, work out Problem 6.6 in Boas Chapter 3. Here, for the Pauli spin matrices introduced
to describe particles of spin 1/2,

A = σx = σ1 =

(
0 1
1 0

)
, B = σy = σ2 =

(
0 −i
i 0

)
, C = σz = σ3 =

(
1 0
0 −1

)
,

you will first need to show that σjσk = δjkI2 + i
∑
l

εjklσl, where δjk and εjkl are defined in

Eq.(9.4) of Boas Chapter 3 and in Eq.(5.3) of Chapter 10, respectively, and In is the n × n
unit matrix. Then, it naturally follows that [σj , σk] ≡ σjσk−σkσj = 2i

∑
l

εjklσl, which is called

1일엽쌍곡면
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the fundamental commutation relation for angular momentum matrices (or [σj , σk] = 2iσl if
j, k, l = 1, 2, 3 or a cyclic permutation thereof).

(b) Briefly discuss how these spin matrices are introduced and used in quantum mechanics.
Prove that σx, σy and σz are both Hermitian and unitary. Show also that σ2 ≡

∑
j
σ2
j = 3I2.

(c) Now, using the 3× 3 spin matrices that can describe particles of spin 1,

Mx = M1 =
1√
2

0 1 0
1 0 1
0 1 0

 , My = M2 =
i√
2

0 −1 0
1 0 −1
0 1 0

 , Mz = M3 =

1 0 0
0 0 0
0 0 −1

 ,

show that [Mj ,Mk] = i
∑
l

εjklMl and M2 ≡
∑
j
M2
j = 2I3.

(Note: You may want to briefly review the textbooks in quantum mechanics such as Griffiths &
Schroeter. For (b), you are simply asked to come up with 2-3 sentences about how the matrices
are used, without diving into laborious quantum mechanical derivations. If needed, you must ref-
erence your sources appropriately with a proper citation convention, but your answer must still
be your own work in your own words. To access the electronic resources — e.g., academic jour-
nals — off-campus via SNU library’s proxy service, see http://library.snu.ac.kr/using/proxy.)

• (a) By combining σjσk = iσl (if j, k, l = 1, 2, 3 or a cyclic permutation thereof) and (σj)
2 = I2

(where I2 is the 2× 2 unit matrix), we can easily show σjσk = δjkI2 + i
∑
l

εjklσl.

• (c) You may compare your answer from direct matrix multiplication with a computer solution.

10. In the class we discussed the Gram-Schmidt orthonormalization process for a linear vector
space and for a general vector space.

(a) In Example 6 of Boas Chapter 3, Section 14 — which we briefly discussed in class but left
for you to work through — with an inner product defined as

〈f |g〉 =

∫ 1

−1
f∗(x)g(x)dx,
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one can start with the functions fi = xi (i = 0, 1, 2, 3) and construct a set of orthonormal
polynomials Pi that satisfy the orthonormality condition on the interval −1 ≤ x ≤ 1,∫ 1

−1
Pm(x)Pn(x)dx = δmn

(see also Eq.(8.4) of Chapter 12, but note a different normalization factor). We later identify
this set of functions as the Legendre polynomials. Starting from Eq.(14.10), follow the procedure
step by step and find for yourself the first four members of Pi.

(b) Consider a different set of functions defined with a similar inner product as in (a), but over
a shifted interval 0 ≤ x ≤ 1. The orthonormality condition is now given by∫ 1

0
P ′m(x)P ′n(x)dx =

1

2m+ 1
δmn.

Find the first three members in the set of orthonormal polynomials P ′i (the sign ′ does not mean
differentiation). We refer to this set of functions as the shifted Legendre polynomials.

(c) Now, with a new inner product defined as

〈f |g〉 =

∫ ∞
−∞

f∗(x)g(x)e−x
2
dx, where e−x

2
is the “weighting” function,

find the first three members in the set of orthonormal polynomials Hi that satisfy the orthonor-
mality condition on the interval −∞ ≤ x ≤ ∞,∫ ∞

−∞
Hm(x)Hn(x)e−x

2
dx = δmn

√
π 2mm!

(see also Eq.(22.15) of Chapter 12). We refer to this set of functions as the Hermite polynomials.

(d) Discuss briefly where the (associated) Legendre polynomials and the Hermite polynomials
appear in quantum mechanics or in other physics research.

[Adapted from Griffiths & Schroeter, Chapter 2.3]

(Note: For (c), you may simply use the value of the so-called Gaussian integral
∫∞
−∞ e

−x2dx =
√
π

without proof, although it can be easily found using the techniques in Boas Chapter 5, Section
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4, or in Problem 9.4 of Chapter 11. The Gaussian integral appears frequently also in elementary
calculus textbooks such as Stewart (Chapter 15.3) or 김홍종 (Chapter 14.4). However, all other
integrals such as

∫∞
−∞ x

2e−x
2
dx must be evaluated explicitly, for example, by using integration

by parts or the technique in Problem 12.16 of Boas Chapter 4. For (d), you may want to briefly
review the textbooks in quantum mechanics such as Griffiths & Schroeter. Once again, you are
simply asked to come up with 2-3 sentences about how these polynomials are used, not the
detailed physical or mathematical discussions. Astronomy majors are highly encouraged to look
for the use cases of Legendre polynomials in astrophysics and cosmology.)

• (b-1) Following the notation in Example 6 of Boas Chapter 3, Section 14, but with P ′i = ei,

first we find P ′0 = p0 = f0 = 1 as ||p0||2 =
∫ 1

0 dx = 1.

• (b-2) Then p1 = f1−P ′0
∫ 1

0 P
′
0f1dx = x−1 ·

∫ 1
0 xdx = x− 1

2 → therefore P ′1 = 2x−1, because

||p1||2 =
∫ 1

0 (x− 1
2)2dx = 1

12 while ||P ′1||2 should be 1
2·1+1 = 1

3 .

• (c-1) Again, following the notation in Example 6 of Boas Chapter 3, Section 14, but now with
Hi = ei, we find H0 = p0 = f0 = 1 as ||p0||2 =

∫∞
−∞ e

−x2dx =
√
π = δ00

√
π · 20 · 0!.

• (c-2) Then p1 = f1 −H0

∫∞
−∞H0f1e

−x2dx = x− 1 ·
∫∞
−∞ xe

−x2dx = x → therefore H1 = 2x,

because ||p1||2 =
∫∞
−∞ x

2e−x
2
dx =

[
x
(
−1

2e
−x2
)]∞
−∞

+ 1
2

∫∞
−∞ e

−x2dx =
√
π

2 while ||H1||2 should

be δ11
√
π · 21 · 1! = 2

√
π.

• (c-3) The list of the first few normalized Hermite polynomials are given in Eq.(22.13) of
Chapter 12, or in p.804 (the answer to Problem 22.4 of Chapter 12).
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