
Mathematical Physics I (Fall 2025): Homework #3

Due Oct. 17, 2025 (Fri, 23:00pm)

[0.5 pt each, total 5 pts, turn in as a single pdf file to eTL]

• By turning in your homework, you acknowledge that you have not received any unpermitted
aid, nor have compromised your academic integrity during its preparation. (Remember the
SNU College of Natural Sciences Honor Code!)

• Textbook problem numbering convention (Boas, 3rd ed.): [Section].[Problem No.]. Many
problems in this assignment are from the list of suggested problems announced in the class.

• Exhibit all intermediate steps to receive full credits. Only handwritten answers are accepted
except for numerical problems or verifications — for which you print out and turn in not just
the end results (e.g., plots) but also the source codes in your favorite tools such as Matlab or
Mathematica.

1.-3. Boas Chapter 4, Problems 7.28, 9.5, 12.15

(Note: For Problem 7.28, you may want to prove and utilize the findings in Problem 7.27. Note
the meaning of the subscripts next to the partial derivatives from Boas Chapter 4, Section 1 in
case you did not read it. Prove further that the resulting formula is the familiar cp − cv = nR
found in e.g., Schroeder or Halliday & Resnick, where n is the number of moles of gas present
and R is the gas constant. For Problem 12.15, you may want to carefully review Boas Chapter
4, Section 12. You are also asked to prove the first equality,

∫∞
0 e−axsinkx dx = k

a2+k2
. The

relations you prove here will be particularly useful later in Boas Chapter 8, Section 8, as we
discuss the Laplace transform.)

4.-5. Boas Chapter 5, Problems 4.16, 6.27

(Note: For Problem 4.16, also find ∂(u, v)/∂(x, y), for which you may want to prove and utilize
the first theorem in Problem 4.18. For Problem 6.27, you will first have to show that the
intervals of integration for u and v are [0, 1] and [0, 1 +u], respectively. See the hint in Problem
4.20 for more information.)
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6.-8. Boas Chapter 6, Problems 3.13, 6.16, 9.7

(Note: For Problem 3.13, tackle the problem in two different ways, first by writing in ordinary
vector notation, then by writing in tensor notation as described in Boas Chapter 10, Section
5. For the tensor approach, you may utilize the result from Problems 5.10 and 5.11 of Boas
Chapter 10. For Problem 9.7, you are asked to prove and utilize the findings in Problem 9.6.)

9. (a) Review Boas Chapter 6, Example 7.2, thus prove Eq.(7.6) or Eq.(f) in p.339. You are
also asked to prove the identity by explicitly working with the components, i.e.,

∇ · (φV) =
∂(φVx)

∂x
+
∂(φVy)

∂y
+
∂(φVz)

∂z
= ...

(b) Review how Gauss’s law ∇ · E = ρ
ε0

is acquired from Coulomb’s law in Boas Chapter 6,
Section 10, where E is the electric field, ρ is the volume charge density, and ε0 is the permittivity
of free space.

(c) Using (a) and (b), show that the energy of a continuous charge distribution is given by

We =
1

2

∫
ρV dτ =

ε0
2

∫
|E|2dτ

for integration over all space, where V is the electric potential. You are first asked to briefly
discuss how one arrived at the term We = 1

2

∫
ρV dτ , and then explicitly prove the second

equality. You may assume that V vanishes at large distance r at least as fast as r−1.

(d) Now, prove Eq.(h) in p.339. You may prove the identity by explicitly working with the
components, i.e.,

∇ · (U×V) =
∂(U×V)x

∂x
+
∂(U×V)y

∂y
+
∂(U×V)z

∂z
= ...

(e) Review how Ampere’s law ∇×B = µ0J is acquired from the Ampere’s circuital law in Boas
Chapter 6, Section 11, where B is the magnetic field, J is the current density, and µ0 is the
permeability of free space.

(f) Using (d) and (e), show that the energy stored in magnetic fields is given by

Wm =
1

2

∫
(A · J)dτ =

1

2µ0

∫
|B|2dτ

for integration over all space, where A is the magnetic vector potential. You are first asked to
briefly discuss how one arrived at the term Wm = 1

2

∫
(A · J)dτ , and then explicitly prove the

second equality. You may assume that A vanishes at large distance r at least as fast as r−1.

[Adapted from Griffiths, Chapter 7.2]
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(Note: The exercises here should sound familiar to most of you as you have begun to study
and explore electromagnetism. If not, you may want to briefly review the classic textbooks
in electromagnetism such as Griffiths or Jackson. If needed, you must reference your sources
appropriately with a proper citation convention, but your answer must still be your own work
in your own words. To access the electronic resources — e.g., academic journals — off-campus
via SNU library’s proxy service, see http://library.snu.ac.kr/using/proxy.)

10. In the class we discussed the Legendre transformation as one of the examples of a simple
change of variables that is found to be useful in classical mechanics and thermodynamics.

(a) Review the general discussion of a Legendre transformation in Boas Chapter 4, Section 11
by following the procedure step by step from Eq.(11.21) to Eq.(11.27).

(b) In one practical example in classical mechanics, given L(x, ẋ) with dL = ∂L
∂xdx + ∂L

∂ẋdẋ =
∂L
∂xdx + pdẋ (note p ≡ ∂L

∂ẋ ), one can find H(x, p) so that dH = ∂L
∂xdx − ẋdp. Find a Legendre

transformation that gives H(x, p). Discuss the meaning of the two functions, L and H, by
identifying them as Lagrangian and Hamiltonian, respectively.

(c) In another example in thermodynamics which we briefly examined but left for your exercise,

given U(S, V ) with dU = ∂U
∂S dS + ∂U

∂V dV = TdS − PdV (note T ≡
(
∂S
∂U

)−1
and P ≡ −∂U

∂V ),
one can find H(S, P ) so that dH = TdS + V dP . Find a Legendre transformation that gives
H(S, P ). Discuss the meaning of the two functions, U and H, by identifying them as (internal)
energy and enthalpy, respectively.

(d) Given dU = TdS − PdV , perform a different Legendre transformation to find another
useful function related to energy, F (T, V ), known as the Helmholtz free energy. Finally, by
performing Legendre transformations on both terms in dU , find yet another function related to
energy, G(T, P ), known as the Gibbs free energy.

(Note: You may want to briefly review the textbooks in classical mechanics such as Thornton &
Marion, and in statistical mechanics such as Schroeder or Reif. For (b) and (c), you are simply
asked to come up with 2-3 sentences about how the these quantities are used in the respective
textbooks, without going into all the mechanical or thermodynamical details.)
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