
Mathematical Physics I (Fall 2025): Midterm Exam Solution

Oct. 25, 2025

[total 20 pts, closed book/cellphone, no calculator, 90 minutes]

1. (a) [1 pt] Find the Maclaurin series expansion for arctanx by verifying and using the identity:

arctanx =

∫ x

0

du

1 + u2
.

This well-known Maclaurin series was first derived by Gregory (1671). Use this result to prove
the Leibniz formula for π (1673),1 that is,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n+ 1
.

(b) [2 pt] The special relativistic sum w of two velocities u and v in the same direction is given
by

w

c
=

u
c + v

c

1 + uv
c2

.

Let u
c = v

c =1− α, with 0≤α≤1. Find the expansion of w
c in powers of α through terms in α3,

which can be useful if α� 1. (Note: You may want to first express w
c in the form of 1

1+f(α) .)

• (a) Using the substitution u = tan θ and du = sec2θ, one can easily verify the given identity.

Then, arctanx =
∫ x
0

du
1+u2

=
∫ x
0 (1−u2 +u4−u6 + . . . )du = x− x3

3 + x5

5 −
x7

7 + . . . , which yields
the Leibniz formula for π when evaluated at x = 1.

• (b) w
c = (1−α)+(1−α)

1+(1−α)2 = 2(1−α)
2(1−α)+α2 = 1

1+ α2

2(1−α)
= 1

1+f(α) . Now, expanding the terms in binomial

power series, w
c = 1

1+f(α) = 1− f(α) + f(α)2− · · · = 1− α2

2 {1 +α+α2 +O(α3)}+
(
α2

2

)2
{1 +

α+ α2 +O(α3)}2 − · · · = 1− α2

2 −
α3

2 +O(α4).

1In fact, Leibniz used a completely different, geometrical method to derive this formula. For historical context,
see “The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha” (R. Roy, 1990).
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2. (a) [1 pt] Show that sinh z = sinhx cos y+i coshx sin y, where z=x+iy is a complex number.

(b) [2 pt] Evaluate the complex expression e2tanh
−1i in a simple x+ iy form.

• (a) sinhx cos y + i coshx sin y = ex−e−x
2 · eiy+e−iy2 + i · ex+e−x2 · eiy−e−iy2i = 2 · ex+iy−e−x−iy4 =

ez−e−z
2 = sinh z.

• (b) tanh−1 i = w → With u ≡ eω, we find tanhw = eω−e−ω
eω+e−ω = u−u−1

u+u−1 = i → u2 = 1+i
1−i = i

→ then, what we wish to acquire is e2tanh
−1i = e2ω = u2 = i.

3. (a) [2 pt] Solve the set of equations below by all three methods listed here: (i) by row reducing
the augmented matrix, (ii) by using Cramer’s rule, (iii) by finding the inverse of the coefficient
matrix. Clearly indicate which method you are using for each part of your answer, so that the
grader could follow it easily. 

x+ 2y − z = −3

2x− y + 4z = 17

−3x+ 5y + 2z = −5

(b) [2 pt] Find the shortest distance from the origin to the line of intersection of the two planes
2x−3y+z = 5 and 3x−y−2z = 11, by first determining the direction of the line of intersection
using vector methods. (Note: Here, you may easily guess — but simply use — the fact that a
point P = (4, 1, 0) lies on both planes.)

(c) [2 pt] Find the shortest distance from the origin to the quadric surface 6xy + 2z2 = 3, by
rotating it to its principal axes (x′, y′, z′). For your information, examples of quadric surfaces
in 3 dimensions include, but are not limited to, the following, as discussed in the class.

• (a-1) As in Example 1 of Boas Chapter 3, Section 2, 1 2 −1 −3
2 −1 4 17
−3 5 2 −5

 →

1 2 −1 −3
0 −5 6 23
0 11 −1 −14

 →

1 2 −1 −3
0 −5 6 23
0 0 61

5
183
5

 →

1 2 −1 −3
0 1 −6

5 −23
5

0 0 1 3


→

1 2 −1 −3
0 1 0 −1
0 0 1 3

 →

1 0 0 2
0 1 0 −1
0 0 1 3


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• (a-2) As in Example 5 of Boas Chapter 3, Section 3,

x =

∣∣∣∣∣∣
−3 2 −1
17 −1 4
−5 5 2

∣∣∣∣∣∣ /
∣∣∣∣∣∣

1 2 −1
2 −1 4
−3 5 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−3 2 −1
5 7 0
−11 9 0

∣∣∣∣∣∣ /
∣∣∣∣∣∣
1 2 −1
0 −5 6
0 11 −1

∣∣∣∣∣∣ = −
∣∣∣∣ 5 7
−11 9

∣∣∣∣ / ∣∣∣∣−5 6
11 −1

∣∣∣∣ = 2, etc.

• (a-3) As in Example 3 of Boas Chapter 3, Section 6,

M =

 1 2 −1
2 −1 4
−3 5 2

→ det(M) = −61 and C =

−22 −16 7
−9 −1 −11
7 −6 −5


→ M−1 =

1

det(M)
CT =

1

61

22 9 −7
16 1 6
−7 11 5

 → then, x = 2, etc.

• (b) As in Example 6 of Boas Chapter 3, Section 5, the direction of the intersection is the cross
product of the two normal vectors, (2,−3, 1) × (3,−1,−2) = (7, 7, 7), which gives the line of
intersection as r = 4i + j + (i + j + k)t. From Figure 5.7 and the accompanying equations, the

distance between O and the line is |
−−→
OP × u| =

∣∣∣(4, 1, 0)× 1√
3
(1, 1, 1)

∣∣∣ =
∣∣∣ 1√

3
(1,−4, 3)

∣∣∣ =
√

26
3 .

• (c) As in Example 2 of Boas Chapter 3, Section 12,

(x, y, z)

0 3 0
3 0 0
0 0 2

xy
z

 = 3 →

∣∣∣∣∣∣
−λ 3 0
3 −λ 0
0 0 2− λ

∣∣∣∣∣∣ = 0 = (2− λ)(λ+ 3)(λ− 3)

from which λ = 2, 3 and −3 are found. Therefore, the new quadric surface equation relative to
the principal axes becomes

(x′, y′, z′)

2 0 0
0 3 0
0 0 −3

x′y′
z′

 = 3 → 2x′2

3
+ y′2 − z′2 = 1

which represents a hyperboloid of one sheet. At (x′, y′, z′) = (0,±1, 0), the surface has the
shortest distance to the origin, d = 1.
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4. (a) [1 pt] Show that for x ∈
[
0, π2

]
,

d

dx

∫ cosx

sinx

√
1− t2dt = −1.

(b) [1 pt] Repeat Problem 3(b), this time using the method of Lagrange multipliers. (Note: This
problem may be somewhat algebraically intensive; please be advised in advance.)

(c) [1 pt] Repeat Problem 3(c), this time using the method of Lagrange multipliers, without
carrying out any coordinate transformation.

• (a) Using Eq.(12.8) of Boas Chapter 4,

d

dx

∫ cosx

sinx

√
1− t2dt =

√
1− cos2x · (−sinx)−

√
1− sin2x · (cosx) = −1.

• (b) From Thm.(9.20) of Boas Chapter 4, and following Example 4 of Boas Chapter 4, Section
9, we write F = x2 +y2 +z2 +λ1(2x−3y+z)+λ2(3x−y−2z). Then, ∂F∂x = 2x+2λ1 +3λ2 = 0,
∂F
∂y = 2y − 3λ1 − λ2 = 0, and ∂F

∂z = 2z + λ1 − 2λ2 = 0. Combining the equations with the

constraints 2x − 3y + z = 5 and 3x − y − 2z = 11 gives (x, y, z) = 1
3(7,−2,−5) with λ1 = 2

21

and λ2 = −34
21 . Thus, d =

√
x2 + y2 + z2 =

√
26
3 .

• (c) From Eq.(9.6) and Thm.(9.20) of Boas Chapter 4, and following Example 3 of Boas
Chapter 4, Section 10, we write F = x2 + y2 + z2 + λ(6xy + 2z2). Then, ∂F

∂x = 2x + 6λy = 0,
∂F
∂y = 2y + 6λx = 0, and ∂F

∂z = 2z + 4λz = 0. The last equation gives two possibilities of
extremum conditions:

- (i) λ = −1
2 → 2x− 3y = 0 and 2y− 3x = 0 → x = y = 0 → the constraint 6xy+ 2z2 = 3

then gives (x, y, z) = (0, 0,±
√

3
2) and the distance to the origin, d =

√
x2 + y2 + z2 =

√
3
2 .

- (ii) z = 0 → for 2x + 6λy = 0 and 6λx + 2y = 0 to have a nontrivial solution, we should
have λ = ±1

3 (acquired from the determinant) → y = ±x → putting everything into the
constraint 6xy + 2z2 = 3 gives (x, y, z) = (± 1√

2
,± 1√

2
, 0) and the distance to the origin, d = 1,

which is obviously smaller than what we got in (i).

5. [2 pt] Compute the gravitational force on a unit mass located at the origin, due to the mass
of uniform density ρ occupying the volume inside the sphere r = 2a (centered at the origin)
and above the plane z = a. (Note: Make sure to specify both the magnitude and the direction
of the resulting force. You may invoke symmetry arguments to explain why certain components
of the net force are zero. The gravitational constant is G.)

• In spherical coordinates, the magnitude of the gravitational force on the unit mass due to the
element of mass dM at (r, θ, φ) is dF = GdM

r2
= GρdV

r2
. So, the z-component of the force is

Fz =

∫
dF cos θ =

∫
Gρ

r2
· r2sin θ drdθdφ · cos θ = Gρ

∫ 2π

0
dφ

∫ π
3

0
sin θ cos θ dθ

∫ 2a

a
cos θ

dr

= 2πaGρ

∫ π
3

0
sin θ cos θ dθ

[
2− 1

cos θ

]
= 2πaGρ

∫ π
3

0
[sin 2θ − sin θ] dθ =

1

2
πaGρ,
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where we adjusted the range of r as a function of θ, while keeping θ’s range at [0, π3 ]. Alterna-
tively, you may adjust the range of θ as a function of r, while keeping r’s range at [a, 2a]:

Fz =

∫
dF cos θ =

∫
Gρ

r2
· r2sin θ drdθdφ · cos θ = Gρ

∫ 2π

0
dφ

∫ 2a

a
dr

∫ arccos (ar)

0
sin θ cos θdθ

= 2πGρ

∫ 2a

a
dr

[
−1

2
cos 2θ

]arccos (ar)
0

= 2πGρ

∫ 2a

a
dr

[
1

2
− cos2θ

]arccos (ar)
0

= 2πGρ

∫ 2a

a
dr

[
1− a2

r2

]
= 2πGρ

[
r +

a2

r

]2a
a

=
1

2
πaGρ.

Either way, you find that the force exerted by the “spherical cap” on the unit mass at the origin
is F = Fzẑ = 1

2πaGρẑ.

6. (a) [2 pt] Evaluate the integral ∫ ∫
σ

(∇×V) · ndσ

over the surface σ consisting of the four slanting faces of a pyramid whose base is the square
in the (x, y)-plane with corners at (0, 0), (0, 2), (2, 0), (2, 2) and whose top vertex is at (1, 1, 2),
where V = (x2z − 2)i + (x + y − z)j − xyzk. Here, n denotes the unit normal vector to σ,
pointing outward from the pyramid.

(b) [1 pt] Prove that ∇×(φV) = φ(∇×V)−V×(∇φ). Here you are asked to prove the identity
by explicitly working with the components, i.e.,

[∇× (φV)]x =
∂(φVz)

∂y
− ∂(φVy)

∂z
= ...

You are also welcomed to tackle this problem using tensor notation for an additional +1 point.

• (a-1) Using Stokes’ theorem, Eq.(11.9) of Boas Chapter 6,∫ ∫
σ

(∇×V) · ndσ =

∮
∂σ
V · dr

=

∫ 2

0
(−2)i · idx+

∫ 2

0
(2 + y)j · jdy +

∫ 0

2
(−2)i ·idx+

∫ 0

2
y j ·jdy

=

∫ 2

0
(2 + y)dy −

∫ 2

0
ydy =

∫ 2

0
2 dy = 4.

• (a-2) Alternatively, you can carry out a different surface integral over σ′, the “square” in the
(x, y)-plane as defined in the problem:∫ ∫

σ
(∇×V) · ndσ =

∫ ∫
σ′

(∇×V) · kdσ′ =
∫ 2

0

∫ 2

0

[
(−xz + 1)i + (x2 + yz)j + k

]
· kdxdy

=

∫ 2

0

∫ 2

0
dxdy = 4.
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• (b-1) Working with the vector components,

[∇× (φV)]x =
∂(φVz)

∂y
− ∂(φVy)

∂z
=

(
∂φ

∂y
Vz + φ

∂Vz
∂y

)
−
(
∂φ

∂z
Vy + φ

∂Vy
∂z

)
= φ

(
∂Vz
∂y
− ∂Vy

∂z

)
− [Vy(∇φ)z − Vz(∇φ)y]

= φ(∇×V)x − [V × (∇φ)]x .

• (b-2) Alternatively, writing in tensor notation and then using Eqs. (5.11), (5.13) and others
of Boas Chapter 10,

[∇× (φV)]i = εijk
∂

∂xj
(φV)k = εijk

(
∂φ

∂xj
Vk

)
+ εijk

(
φ
∂Vk
∂xj

)
= φ · εijk

(
∂Vk
∂xj

)
− εikjVk(∇φ)j

= φ(∇×V)i − [V × (∇φ)]i .
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