Mathematical Physics I (Fall 2025): Midterm Exam Solution

Oct. 25, 2025

[total 20 pts, closed book/cellphone, no calculator, 90 minutes]

1. (a) [1 pt] Find the Maclaurin series expansion for arctan by verifying and using the identity:

/"3 du
arctanx = 5
o 1+u

This well-known Maclaurin series was first derived by Gregory (1671). Use this result to prove
the Leibniz formula for = (1673)E| that is,
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(b) [2 pt] The special relativistic sum w of two velocities u and v in the same direction is given
by

w_ oty

c 144
Let £ =2=1-a, with 0<a<1. Find the expansion of ¢} in powers of a through terms in ad,
which can be useful if o < 1. (Note: You may want to first express ¥ in the form of ﬁ(a))

e (a) Using the substitution v = tan# and du = sec?d, one can easily verify the given identity.
Then, arctanz = [ 724 = [F(1—w?+u* —ub+...)du = x—%—l—%—x—;—i—. .., which yields

1-+u?
the Leibniz formula for 7 when evaluated at = 1.
o (b)Y = (11—f()1+_(;)—2a) = 2(5(_1;)122 = L= ch(a) . Now, expanding the terms in binomial
2(1—a)
2
power series, ¥ = ﬁm) =1-fla)+ fla)?—---=1- O‘72{1 +a+a?+0(e?)}+ (%2) {1+
ata?+0@))2 - =1-2 2 10,

n fact, Leibniz used a completely different, geometrical method to derive this formula. For historical context,
see “The Discovery of the Series Formula for m by Leibniz, Gregory and Nilakantha” (R. Roy, 1990).



2. (a) [1 pt] Show that sinh z = sinh  cos y+1 cosh  sin y, where z=x +1y is a complex number.

2tanh 14

(b) [2 pt] Evaluate the complex expression e in a simple z + iy form.

. . . T _,—x iy —1iy . T —x Y __,—1Y Ty _ —x—1Yy

e (a) sinhzcosy +icoshzsiny = S=f— - —H— 44— . 50— — 2. < =
zZ__,—z .
“~— =sinhz.

-1, _ : — Lw _e¥—e ¥ _ u—uTl _ 2 _ 144 __
e (b) tanh™ i =w — With u=e¥, we find tanhw = e T S uga T =0 U= =1

. .. —1, .

— then, what we wish to acquire is e2#0h ™ = o20 — 42 — 4,

3. (a) [2 pt] Solve the set of equations below by all three methods listed here: (i) by row reducing
the augmented matrix, (7i) by using Cramer’s rule, (i7i) by finding the inverse of the coefficient
matrix. Clearly indicate which method you are using for each part of your answer, so that the
grader could follow it easily.
rT+2y— z2=-3
20 — y+4z= 17
—3x + 5y + 2z = -5

(b) [2 pt] Find the shortest distance from the origin to the line of intersection of the two planes
2¢—3y+2z =5 and 3x —y—2z = 11, by first determining the direction of the line of intersection
using vector methods. (Note: Here, you may easily guess — but simply use — the fact that a
point P = (4,1,0) lies on both planes.)

(c) [2 pt] Find the shortest distance from the origin to the quadric surface 6xy + 22% = 3, by
rotating it to its principal axes (2,1, 2’). For your information, examples of quadric surfaces
in 3 dimensions include, but are not limited to, the following, as discussed in the class.

S s
- hyperboloid of hyperboloid of - elliptic hyperbolic
ellipsoid one sheet two sheets elliptic cone paraboloid paraboloid
e (a-1) As in Example 1 of Boas Chapter 3, Section 2,
1 2 -1 -3 1 2 -1 -3 1 2 -1 -3 1 2 -1 -3
2 -1 4 17| - |0 -5 6 23| = (0 -5 6 23| - (01 -& -2
-3 5 2 =5 0 11 -1 -14 o o ¢ 18 00 1 3
1 2 -1 -3 1 0 0 2
- {01 0 —-1}] — (0 1 0 -1
0 0 1 3 0 01 3



e (a-2) As in Example 5 of Boas Chapter 3, Section 3,

-3 2 -1 1 2 -1 -3 2 -1 |1 2 -1 5 71 -5 6
z=|17 -1 4|/|2 -1 4|=|5 7 0l|/l0 =5 6 :’—11 9‘/‘11 2
-5 5 2 -3 5 2 -1 9 0 0 11 -1
e (a-3) As in Example 3 of Boas Chapter 3, Section 6,
1 2 -1 -22 -16 7
M=|2 -1 4| —>det(M)=—61and C=| -9 -1 -I1
-3 5 2 7 -6 -5
1 1 22 9 -7
- M= T——116 1 6 — then, z = 2, etc.

C* =
det(M) 61\ = 11 &

e (b) As in Example 6 of Boas Chapter 3, Section 5, the direction of the intersection is the cross
product of the two normal vectors, (2,—3,1) x (3,—1,—2) = (7,7,7), which gives the line of
intersection as r = 4i + j + (i + j + k)t. From Figure 5.7 and the accompanying equations, the

distance between O and the line is |O¢ X u| = ‘(4,1,0) f (1,1,1) ‘ = ‘f —4,3) ‘ = \/—.

e (¢) As in Example 2 of Boas Chapter 3, Section 12,

0 3 0 T -2 3 0
(,y,2) [3 0 0] [y]=3—=>13 =X 0 [=0=02-XNA+3)(A-3)
0 0 2 z 0 0 2—2AX

from which A = 2, 3 and —3 are found. Therefore, the new quadric surface equation relative to
the principal axes becomes

2 0 0 ! 0112
(:E/’ y,7 Z’) 0 3 O y/ et 3 — 3 + y/2 _ Z/Q — 1
0 0 =3 2

which represents a hyperboloid of one sheet. At (2/,vy,2') = (0,+1,0), the surface has the
shortest distance to the origin, d = 1.

% WolframAlpha % WolframAlpha

22/2+6xy=3 B | | 2¢2+3y2232423 =]

A

' = 2, etc.



4. (a) [1 pt] Show that for z € [0, ],

d Cos T

— V1—1t2dt = —1.

dx sinx

(b) [1 pt] Repeat Problem 3(b), this time using the method of Lagrange multipliers. (Note: This
problem may be somewhat algebraically intensive; please be advised in advance.)

(c) [1 pt] Repeat Problem 3(c), this time using the method of Lagrange multipliers, without
carrying out any coordinate transformation.

e (a) Using Eq.(12.8) of Boas Chapter 4,

d Cos T

— V1 —12dt = /1 —cos?z - (—sinz) — V1 —sin?z - (cosz) = —1.

dx sin

e (b) From Thm.(9.20) of Boas Chapter 4, and following Example 4 of Boas Chapter 4, Section
9, we write F' = 2% +y? + 2% + A1 (22 — 3y + 2) + \2(3x —y — 22). Then, %—f =2r+2X1 +3)\ =0,
%—5 = 2y —3X\1 — A2 = 0, and %—f = 2z 4+ A1 — 2X2 = 0. Combining the equations with the
constraints 2x — 3y + z = 5 and 3z — y — 2z = 11 gives (z,y,2) = %(7, —2,-5) with A} = %

and Ay = —51. Thus, d = /22 + 32 + 22 = |/ 2.

e (c) From Eq.(9.6) and Thm.(9.20) of Boas Chapter 4, and following Example 3 of Boas
Chapter 4, Section 10, we write F' = 22 + y? + 22 + A\(6xy + 222). Then, %—5 =2z + 6y =0,
%—5 = 2y + 6 Az = 0, and %—5 = 2z + 4z = 0. The last equation gives two possibilities of
extremum conditions:

-(i))\:—% — 22—3y=0and2y—32x=0 — z=y=0 — the constraint 6zy + 222 =3

then gives (z,y, z) = (0,0, i\/g) and the distance to the origin, d = /22 + y% + 22 = \/g

- (i) z=0 — for 2x + 6Ay = 0 and 6Azx + 2y = 0 to have a nontrivial solution, we should
have A\ = i% (acquired from the determinant) — y = +x — putting everything into the
constraint 6xy + 222 = 3 gives (z,y,2) = (:l:%, :I:%, 0) and the distance to the origin, d = 1,
which is obviously smaller than what we got in (7).

5. [2 pt] Compute the gravitational force on a unit mass located at the origin, due to the mass
of uniform density p occupying the volume inside the sphere r = 2a (centered at the origin)
and above the plane z = a. (Note: Make sure to specify both the magnitude and the direction
of the resulting force. You may invoke symmetry arguments to explain why certain components
of the net force are zero. The gravitational constant is G.)

e In spherical coordinates, the magnitude of the gravitational force on the unit mass due to the

element of mass dM at (r,0,¢) is dF = Gﬁly = G’; v So, the z-component of the force is

27 z 2a
Fz—/dFCOSH—/ff-r2sin9drd9d¢-cos«9—6*p/ d¢/3 sin@cos&d@/ dr
0 0 -2

cos 6

5 1 5 1
= 27raGp/3 sin 6 cos 6 df [2 - 9] = 27raGp/3 [sin 20 — sin 6] dO = —mwaGp,
0 0

cos 2



where we adjusted the range of r as a function of 6, while keeping ¢’s range at [0, §]. Alterna-
tively, you may adjust the range of 6 as a function of r, while keeping 7’s range at [a, 2a]:

G D 5 27 2a arccos (%) )
F, = /chos@z/2~r sin @ drdfd¢ - cos§ = Gp/ dgb/ dr/ sin 6 cos 0d0
r 0 a 0

2a 1 arccos (%) 2a 1 ) arccos (%)
= 27TG,0/ dr [—2cos 20} = 27er/ dr [2 — cos 0]

0 0
2a

2a 2 2 1
= 27er/ dr [1 — (;2] =27Gp [7“ + C:ﬂ} = §7raGp.

Either way, you find that the force exerted by the “spherical cap” on the unit mass at the origin
isF=F,z= %ﬂ’CLGpZ.

6. (a) [2 pt] Evaluate the integral

//U(VXV)-ndo—

over the surface o consisting of the four slanting faces of a pyramid whose base is the square
in the (z,y)-plane with corners at (0,0), (0,2), (2,0), (2,2) and whose top vertex is at (1,1,2),
where V = (222 — 2)i + (z + y — 2)j — zyzk. Here, n denotes the unit normal vector to o,
pointing outward from the pyramid.

(b) [1 pt] Prove that V x (¢ V) = ¢(V x V)=V x (V¢). Here you are asked to prove the identity
by explicitly working with the components, i.e.,
0(¢Vz) _ 9(9Vy)

You are also welcomed to tackle this problem using tensor notation for an additional +1 point.

e (a-1) Using Stokes’ theorem, Eq.(11.9) of Boas Chapter 6,

//(VXV)-nda: V -dr
o do
2 2 0 0
:/ (—2)i-idzx -l-/ (2+y)j-jdy +/ (—2)i-idx +/ yj-jdy
0 0 2 2

2 2 2
:/ (2+y)dy—/ ydy:/ 2dy = 4.
0 0 0

e (a-2) Alternatively, you can carry out a different surface integral over ¢/, the “square” in the
(z,y)-plane as defined in the problem:

//U(V><V)-nda://gl(VxV).kdg’:/:/Oz (=2 + )i+ (2 + y2)j + K| - kdedy

2 2
= / / dxdy = 4.
o Jo



e (b-1) Working with the vector components,

d(pVs d(oV, 0 oV, 0 oV,
v x (ov)], = A0 KO (o4 GO ) (T2, 4 05
av, IV,
—o (52 - G2 - Vo). - V(T

= (VX V), = [V x (Vo).

e (b-2) Alternatively, writing in tensor notation and then using Egs. (5.11), (5.13) and others
0
[V x (¢V)]; = eijkai(ﬁbv)k = €ijk
Lj

of Boas Chapter 10,
¢ Vi
ORI C )
oV,

= Q- €jk <8x];> — €ir; Vi (V)

=o(Vx V) —[Vx (Vo).



