
Mathematical Physics I (Fall 2022): Homework #5 Solution

Due Nov. 18, 2022 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 8, Problem 5.24

(Note: For Problems in Sections 5 and 6, read the instruction in the textbook carefully; that is,
you have been asked to find a computer solution and reconcile differences, if any. For Problem
5.24, you will first want to review Problem 5.21.)

• The auxiliary equation of (D + 1)(D2 −D + 1)y = 0 has three roots, −1 and 1
2 ±

√
3
2 i. From

Eqs.(5.16)-(5.18), you get y = Ae−x+ex/2(Bei(
√
3/2)x+Ce−i(

√
3/2)x), or Ae−x+ex/2(D sin

√
3
2 x+

E cos
√
3
2 x), or Ae−x + Fex/2sin(

√
3
2 x+ γ).

2. Boas Chapter 8, Problem 6.10

• From Eqs.(5.15) and (6.18), and with 3 as the equal root of the auxiliary equation of its
homogeneous counterpart, you get y = yc + yp = (Ax+B)e3x +Cx2e3x. Plugging yp back into
the equation yields C = 3.
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3. Boas Chapter 8, Problem 6.26

• Combining the technique in Examples 6 and 7 of Section 6, we attempt to find a particular
solution of the equation (D + i)(D − i)Y = 8xeix. Because i equals to one of the roots of the
auxiliary equation, from Eq.(6.24) you try a particular solution of the form Yp = xeix(Ax+B).
Plugging Yp back into the equation yields A = −2i, B = 2 and Yp = xeix(−2ix+ 2). Therefore,
the particular solution we need is yp = Im(Yp) = −2x2 cosx+ 2x sinx.

4. Boas Chapter 8, Problem 6.34

• As in Example 9 of Section 6, (D − 2)(D − 3)y = 2ex + (6x − 5) gives y = yc + yp1 + yp2 =
Ae2x +Be3x + ex + x.

5. Boas Chapter 8, Problem 7.3

(Note: You may continue to utilize computer solutions to validate your answers to problems in
Sections 7 to 9.)

• From Eq.(7.3) for Case (b), inserting y′ = p and y′′ = pdpdy into the given differential equation

gives 2y ·pdpdy = p2 → 2dp
p = dy

y → ln p2 = ln y+C1 → p2 = C2|y| =
(
dy
dx

)2
→ dy

|y|1/2 = C3dx
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→ 2|y|
1
2 = C3x + C4 → y = A(x + B)2. This seemingly “general” solution does not include

an obvious solution by inspection, y = constant, as we discussed in Example 3 of Section 2.

6. Boas Chapter 8, Problem 7.22

• From Eqs.(7.17)-(7.19) for Case (d), inserting xy′ = dy
dz and x2y′′ = d2y

dz2
− dy

dz into the given

differential equation gives d2y
dz2

+ y = 2x = 2ez, which now became identical to Problem 6.5.
Thus, from y(z) = yc + yp = Aeiz + Be−iz + ez or Ccos z + D sin z + ez, you get y(x) =
Ccos(lnx) +D sin(lnx) + x.

7. Boas Chapter 8, Problem 8.12

• In order to utilize L9-L10 in the Laplace transform table (Boas p.469-471), we write

Y =
3p+ 10

p2 − 25
= 3 · p

p2 − 25
+ 2 · 5

p2 − 25
,

from which you can find y = L−1(Y ) = 3 cosh 5t+ 2 sinh 5t , or 5
2e

5t + 1
2e
−5t.
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• Alternatively, to utilize L7-L8 in the Laplace transform table, we reshape the given form as

Y =
3p+ 10

p2 − 25
=

3p+ 10

(p− 5)(p+ 5)
= 3 · p

(p− 5)(p+ 5)
+ 10 · 1

(p− 5)(p+ 5)
.

Therefore, y = L−1(Y ) is found to be

y = 3 · −5e5t − 5e−5t

−5− 5
+ 10 · e

5t − e−5t

5− (−5)
=

3

2
e5t +

3

2
e−5t + e5t − e−5t = 3 cosh 5t+ 2 sinh 5t.

8. Boas Chapter 8, Problem 9.16

•With Eqs.(9.1)-(9.2) and L4 in the Laplace transform table, we transform the given differential
equation into

p2Y − py0 − y′0 + 9Y = L(cos 3t) → p2Y − 2p+ 9Y =
p

p2 + 32
→ Y =

p

(p2 + 32)2
+

2p

p2 + 32
,

from which you get y = L−1(Y ) = 1
6 t sin 3t + 2 cos 3t by using L4 and L11 in the Laplace

transform table.
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9. Let us apply the Laplace transform to two examples in nuclear physics.

(a) Consider a series of radioactive decays between three nuclides, with Nuclide 1 decaying into
Nuclide 2, and Nuclide 2 into Nuclide 3. The concentration fo the nuclides satisfy the system
of differential equations

dN1

dt
= −λ1N1,

dN2

dt
= λ1N1 − λ2N2,

dN3

dt
= λ2N2,

where one can see that Nuclide 3 is assumed to be stable. λ1 and λ2 are decay constants.
Explain the meaning of each term in each equation. Then, with initial conditions N1(0) = N0,
N2(0) = 0, and N3(0) = 0, find N1(t), N2(t), and N3(t). Tackle the problem in two different
ways, first by using the methods described in Boas Chapter 8, Sections 2 and 3, then by using
the Laplace transform.

(b) Now consider a different type of radioactive decay seen in a nuclear reactor. The rate of
change in concentration of Nuclide 2 is now modified to

dN2

dt
= φ(σ1N0 − σ2N2)− λ2N2,

where one can see that the concentration of Nuclide 1 is assumed to be (approximately) constant
— i.e., N1(t) = N1(0) = N0. φ is the neutron flux (in cm−2 s−1) and σ1 and σ2 (in cm2) are
neutron absorption cross sections. Briefly explain only in words the meaning of each term in
the equation. Then, with an initial condition N2(0) = 0, find N2(t).

(Note: If you are not familiar with the topics discussed here such as radioactive decay or a
nuclear reactor, you may review the freshman physics textbooks such as Halliday & Resnick.
For (a), you may also want to review Example 2 in Boas Chapter 8, Section 3. For (b), find
the numerical value of N2 at t = 1 year, the concentration of 154Eu which the original isotope
153Eu is decaying into, using the following constants: σ1 = 4 × 10−22cm2, σ2 = 10−21cm2,
λ2 = 1.4×10−9s−1, φ = 109cm−2 s−1, and N0 = 1020. Check if the assumption that N1(t) = N0

is justified. Control rods in nuclear reactors should be made of elements capable of absorbing
many neutrons without themselves decaying, such as 153Eu.)

• (a-1) As in Example 2 in Boas Chapter 8, Section 3, you can use Eq.(3.9) to acquire the
desired equations.

• (a-2) Using Eq.(9.1) of Boas Chapter 8, you get pY1 + λ1Y1 = N0, which has the solution
Y1 = N0

p+λ1
. From L2 of the Laplace transform table (Boas p.469-471), you reach N1(t) =

N0e
−λ1t. Then, from the second equation you get pY2 + λ2Y2 = N0λ1

p+λ1
, which has the solution

Y2 = N0λ1
(p+λ1)(p+λ2)

. L7 of the Laplace transform table gives us N2(t) = N0λ1
e−λ1t−e−λ2t

λ2−λ1 .

• (b) The first two terms on the right-hand side describe the production and destruction of
Nuclide 2 via neutron absorption. The last term describes the radioactive decay of Nuclide 2.
Using Eq.(9.1) of Boas Chapter 8, you can easily get N2(t) = N0φσ1

λ2+φσ2

(
1− e−(λ2+φσ2)t

)
.

10. In the beginning of Boas Chapter 8, Section 7, the author discusses many methods of
solving various types of second-order ODEs. Among them is Lagrange’s method of variation of
parameters to find a particular solution of an inhomogeneous ODE.

(a) Let us start with a homogeneous second-order linear ODE in the form of

y′′ + p(x)y′ + q(x)y = 0
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where p and q are continuous functions of x. Let us assume that we know its two independent
solutions, y1 and y2. Now, for the inhomogeneous second-order linear ODE of

y′′ + p(x)y′ + q(x)y = f(x),

show that a particular solution yp(x) is written as

yp(x) = −y1(x)

∫
y2(x

′)f(x′)

W (x′)
dx′ + y2(x)

∫
y1(x

′)f(x′)

W (x′)
dx′

where W (x′) is the Wronskian of y1 and y2, W (y1(x
′), y2(x

′)).

(Note: You may start with yp = c1(x)y1(x) + c2(x)y2(x) and follow the step-by-step instruction
given in Boas Chapter 8, Problem 12.14(b) that leads to the set of two conditions for c1 and
c2: c′1(x)y1(x) + c′2(x)y2(x) = 0 and c′1(x)y′1(x) + c′2(x)y′2(x) = f(x). Notice that the first
equation of this set is our “imposed” condition, while the second one is what you get if you
plug y′p = {c′1(x)y1(x) + c′2(x)y2(x)}+ {c1(x)y′1(x) + c2(x)y′2(x)} = c1(x)y′1(x) + c2(x)y′2(x) and
the corresponding y′′p into our ODE above. In case you wonder, no knowledge about the Green
function in Section 12 is needed to tackle this problem.)

Now, utilizing the given solution of the homogeneous equation, find a solution of each of the
following inhomogeneous ODEs. (More exercise problems in Chapter 8, Problems 12.15-18.)

(b) y′′ + y = secx ; with y1 = cosx and y2 = sinx

(c) (1− x)y′′ + xy′ − y = (1− x)2 ; with y1 = x and y2 = ex

• (b) y(x) = C1cosx+ C2sinx+ yp(x) = (C1 + ln|cosx|)cosx+ (C2 + x)sinx

• (c) y(x) = C1x+ C2e
x + yp(x) = C ′1x+ C2e

x + x2 + 1

6


