Mathematical Physics I (Fall 2022): Homework #4 Solution

Due Nov. 4, 2022 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 7, Problem 5.4

(Note: For Problem 5.4, you are asked to tackle the problem in two ways — first directly find
the Fourier coefficients, then verify your result using the answer given in Problem 5.3.)

e From Egs.(5.6), (5.9)-(5.10), you can find
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2. Boas Chapter 7, Problem 6.12 (for Problem 5.9)

(Note: For Problems 6.12 and 7.9, you will first have to work out Problem 5.9. You are asked
to tackle Problem 5.9 in two ways — first directly find the Fourier coefficients, then verify your
result using the answer given in Problem 5.7. Then for Problem 6.12 you may consider a way
to automatically draw several partial sums of different n’s — e.g., a simple script written in
MATLAB or in python; however, making such an automated script is not necessary for you to
receive a full credit.)

e An example of an automated plotting script (n =1 to 9) is as follows:



LICH ) Figure 1

ST s ckup_n 10index — Hello! — screel

File Edit Options Buffers Tools Python Help 35
import numpy as np
import matplotlib.pyplot as plt 3.0
N = 10 # partial sums up to the N-th term 25
t = np.arange(-np.pi, 2*np.pi, 0.02)
def my_fourier(n, t): 20

partial_sum = [np.pi/2] * len(t)

for nn in range(1, n+l):

if nnk%2==1: 15
partial_sum -= (4./np.pid*np.cos(nn*t)/float(nn)**2

return partial_sum 10
for n in range(1, N+1):

col = 1. - float(n)/float(N) 0.5

plt.plot(t, my_fourier(n, t), '-', color = (col,col,col))
plt.show() 0'0—4 -2 0 2 a4 6 8
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By pushing n to 20, a very good approximation of the given f(z) is acquired already:
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import numpy as np
import matplotlib.pyplot as plt B
N = 20 # partial sums up to the N-th term 25
t = np.arange(-np.pi, 2*np.pi, 0.02)
def my_fourier(n, t): 2.0
partial_sum = [np.pi/2] * len(t)
for nn in range(l, n+1): 15
if nn¥k2=1:
partial_sum -= (4./np.pid*np.cos(nn*t)/float(nn)**2
return partial_sum 10
for n in range(N, N+1): 05
col = 1. - float(n)/float(N) )
plt.plot(t, my_fourier(n, t), '-', color = (col,col,col))
0.0
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e You are, however, not required to come up with an automated script like above. You may

simply use e.g., WolframAlpha to create multiple plots in a row. For example, the black line
(n =9) in the first plot above matches what is seen below:

& WolframAlpha

{ pi/2 - (4/pi)*(cos(x)+cos(3x)/3*2+cos(5x)/5*2+cos(7x)/7*2+cos(9x)/9*2) a }
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3. Boas Chapter 7, Problem 7.9
e From Egs.(7.4) and (7.6), you can find
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4. Boas Chapter 7, Problem 9.20
(Note: For Problem 9.20, check out Example in Boas Chapter 7, Section 9 for a worked example.)
e For even function f. of period 2b, from Egs.(5.6), (5.9)-(5.10) or (8.3) or (9.5), you can find
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5. Boas Chapter 7, Problem 12.26
(Note: For Problem 12.26, you are asked to first work out Problem 12.15.)
e From Eq.(12.15), you can find
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From the Fourier integral theorem in Boas Chapter 7, Section 12, and with a = 1, you reach
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6. Boas Chapter 7, Problem 13.4
(Note: For Problem 13.4(a), use the technique discussed in Boas Chapter 8, Section 2.)

e (c) Writing ¢(t) = gy + q.(t) = CV — CVe YEC | we first aim to expand ¢.(t) = —~CVe /EC
in a complex exponential Fourier series. From Eqs.(8.2)-(8.3) with 20 = £ RC, you can write

[e.9]

qc(t)z Z cne4inrrt/RC7 and

9 [RC/2 20V [RC2 |
__c _ v ~t/RC g — _o 1— - 1/2
€= 55 /0 qe(t)dt RC J, e dt CV(l—e /%),

RC/2

RC/2
Cp = % / / qc(t)efllinwt/RCdt — _2CV eft/RCeanTrt/RCdt
0

RC J,
1_ e—(%—f—Zinﬂ) 1— 671/2
( 1+ 4dinwt 1+ 4dinnt
Thus, you can express ¢(t) as

s 0 64inm‘/RC’
a(t) = g+ aelt) = OV {1 =21 =) 37 b

n=—oo

7. Boas Chapter 8, Problem 2.8

(Note: For Problem 2.8, read the instruction in the textbook carefully; that is, you have been
asked to plot a slope field with a computer, for example. Read Boas Chapter 8, Section 1 to
learn about the “slope field”.)
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% WolframAlpha e

slope field of y'=-2xy*2 8

n
% NATURAL LANGUAGE | 5 MATH INPUT BH EXTENDED KEYBOARD i3} EXAMPLES £ UPLOAD 33 RANDOM

Input interpretation

slopefield y' =-2x ¥

Result @ Enlarge &, Data @ Customize A Plain Text

P22 RGN

10t/
t/

V0L 777777 rmm~NNNANN N
1.0 0.5 0.0 05
x

Separable equation

Yo
yx)?

ODE classification

first-order nonlinear ordinary differential equation

Differential equation solution [« Step-by-step solution

(x) =
Y o +x2

8. Boas Chapter 8, Problem 3.14
(Note: For Problem 3.14, again, read the instruction and the hint in the textbook carefully.)

5. Meanwhile, plugging
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9. Let us use the Fourier transform to appreciate the meaning of the Heisenberg uncertainty
principle in quantum mechanics.



(a) Imagine an infinite wave train sinwpt clipped by shutters to maintain only N cycles of the
original waveform:

sinwpt, if |wot| < N,
ft) = .
0, if |wot| > N.

Find the amplitude function of the Fourier (exponential) transform, g(w). Since the prefactor
may depend on the exact definition of the transform, do not worry too much about it.

(b) Find the amplitude function of the Fourier sine transform, gs(w). Again, since the prefactor
may depend on the exact definition of the transform, do not worry too much about it.

(c) Show that, in the special case of N = 3 and wy = 1, gs(w) becomes
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(d) Now consider the limit of wy > 1 and w & wy. Show that gs(w) is approximately equal to

]
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Sketch or computer plot this function for N = 1,3,5,10 and an arbitrary wg. Notice that for

N > 1, gs2(w) may be interpreted as proportional to what we later define as the Dirac delta
function, 4, in Boas Chapter 8, Section 11.

(Note: You do not need to provide a mathematically rigorous proof that gs2(w) indeed becomes
proportional to é(w —wp) as N — co. For now, observe the shape of g 2(w) as you vary N, and
based on your observation simply argue that lim gg2(w) — 00 as N — 00.)

w —wo

(e) Show that the first zeros of gs2(w) from w = wp are at w = wo+ Aw = wo = 7. Justify that
Aw = 5 could be a good measure of the spread (or uncertainty) in frequency of our clipped
wave train. Then, establish the inverse relationship between the wave train’s pulse length (N7)
and the frequency spread (Aw). Finally, using the relationship along with the assumed wave

nature of matter, explain the uncertainty principle of quantum mechanics.

(Note: You may want to briefly review the textbooks in quantum mechanics such as Grif-
fiths & Schroeter. Note that the inverse relationship found here is a fundamental property of
the finite wave train, and has little to do with any additional ad hoc postulates in quantum
mechanics. If needed, you must reference your sources appropriately with a proper citation
convention, but your answer must still be your own work in your own words. To access the
electronic resources — e.g., academic journals — off-campus via SNU library’s proxy service,
see http://library.snu.ac.kr/using/proxy.)

e (a) From Eq.(12.2) of Boas Chapter 7, you find
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e (b) From Eq.(12.14) of Boas Chapter 7, you can find
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o (d) lim gso(w) = \lﬁ — 00 as N — oo. Computer plots of gs2(w) for N =1 and 5 can
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be found below.

& WolframAlpha

y=sin((1-w)*1*pi/1)/(1-w), w from -9 to 11,y from -1 to 4
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10. Let us consider various objects falling under the gravitational acceleration g.

(a) Consider a ball of mass m falling downward. y is the distance the ball traveled at time ¢
(i.e., y > 0 and &, points downward). The ball experiences a resistive force proportional to its
speed, —bu(t), where v(t) = y'(t). With the initial condition v(0) = 0, show that the speed of



the ball is written as ,
v(t) = v (1 - e_ﬁt> ,
where vy = mg/b is a terminal velocity as ¢t — oc.

(b) Now consider a different air drag. A falling parachutist experiences a quadratic resistive
force —bv?(t) on the parachute. For simplicity, assume that the parachute opens immediately
at t = 0 when v(0) = 0. Prove that the speed of the parachutist can be written as

v(#) = v tanh (;) ,

where v, = y/mg/b is now a different terminal velocity and T' = y/m/gb is the timescale that
characterizes the asymptotic approach of v(t) to vy.

(c) Let us insert numerical values in your answer in (b). For a skydiver in free fall with
m = 70 kg, find the terminal velocity with the constant of proportionality (friction coefficient)
b = 0.25kgm™'. Then, for the same skydiver but now with her parachute open, find the

terminal velocity with b = 700 kgm™!.

(Note: If you are not familiar with the concept of terminal velocity, you may want to review

the freshman physics textbooks such as Halliday & Resnick. For (b), you may find it useful to

write your equation of motion in a separable form, v2d_”v2 = %.)
t

e (a-1) The equation of motion F' = mv’ = mg — bv (with both &, and g pointing downward)
— d”iv =dt - —Phn(g—Lv)=t+C1 — v(t) =22~ mTCQe_%t =t (1 —e_%t)

m

e (a-2) Alternatively, you may solve this problem using the Laplace transform discussed in
Boas Chapter 8, Section 8. Taking the Laplace transform of the equation with Y = L(v) and

_ _mg _ - _9 _mg(1_ 1 = — _%t)
v(0) = 0, you find mpY = - Y — Y ot ) 7 <p P“‘T’;) — U= (1 e .
dv_ _ bdt 1 vetv | _ bt _oexp(F)-1 L
L] (b) ’U?*’UQ = — Sur In (vtiv) = m — 'U(t) = Vg exp(%)—}—l = V¢ tanh (T)



