
Mathematical Physics I (Fall 2022): Homework #4 Solution

Due Nov. 4, 2022 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 7, Problem 5.4

(Note: For Problem 5.4, you are asked to tackle the problem in two ways — first directly find
the Fourier coefficients, then verify your result using the answer given in Problem 5.3.)

• From Eqs.(5.6), (5.9)-(5.10), you can find

a0 =
1

π

∫ π

−π
f(x)dx =

1

π

{
−
∫ π/2

−π
dx+

∫ π

π/2
dx

}
= −1,

an =
1

π

∫ π

−π
f(x)cosnx dx =

1

π
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∫ π/2

−π
cosnx dx+

∫ π

π/2
cosnx dx

}

=
1

π

{
−
[
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n

]π/2
−π

+

[
sinnx

n

]π
π/2

}
= −2 sin (nπ/2)

nπ
=

{
0, if n even,
2(−1)n
nπ , if n odd,

bn =
1

π

∫ π

−π
f(x)sinnx dx =

1

π

{
−
∫ π/2

−π
sinnx dx+

∫ π

π/2
sinnx dx

}

=
1

π

{
−
[
−cosnx

n

]π/2
−π

+
[
−cosnx

n

]π
π/2

}
=

2 cos(nπ/2)

nπ
− 2 cosnπ

nπ
=


2
nπ , if n odd,

0, if n = 4k,

− 4
nπ , if n = 4k + 2.

2. Boas Chapter 7, Problem 6.12 (for Problem 5.9)

(Note: For Problems 6.12 and 7.9, you will first have to work out Problem 5.9. You are asked
to tackle Problem 5.9 in two ways — first directly find the Fourier coefficients, then verify your
result using the answer given in Problem 5.7. Then for Problem 6.12 you may consider a way
to automatically draw several partial sums of different n’s — e.g., a simple script written in
Matlab or in python; however, making such an automated script is not necessary for you to
receive a full credit.)

• An example of an automated plotting script (n = 1 to 9) is as follows:
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By pushing n to 20, a very good approximation of the given f(x) is acquired already:

• You are, however, not required to come up with an automated script like above. You may
simply use e.g., WolframAlpha to create multiple plots in a row. For example, the black line
(n = 9) in the first plot above matches what is seen below:
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3. Boas Chapter 7, Problem 7.9

• From Eqs.(7.4) and (7.6), you can find

c0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

{
−
∫ 0

−π
xdx+

∫ π

0
xdx

}
=
π

2
,

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

{
−
∫ 0

−π
xe−inxdx+

∫ π

0
xe−inxdx

}
=

1

2π

{
−
[
xe−inx

−in

]0
−π
− 1

in

∫ 0

−π
e−inxdx+

[
xe−inx

−in

]π
0

+
1

in

∫ π

0
e−inxdx

}

=
1

2π
· 2 · (−1)n − 1

n2
=

{
0, if n even,

− 2
πn2 , if n odd.

4. Boas Chapter 7, Problem 9.20

(Note: For Problem 9.20, check out Example in Boas Chapter 7, Section 9 for a worked example.)

• For even function fc of period 2b, from Eqs.(5.6), (5.9)-(5.10) or (8.3) or (9.5), you can find
bn = 0,

a0 =
1

1

∫ 1

−1
x2dx = 2

∫ 1

0
x2dx =

2

3
,

and

an = 2

∫ 1

0
x2 cosnπx dx = 2

{[
x2 sinnπx

nπ

]1
0

− 2

nπ

∫ 1

0
xsinnπx dx

}

= − 4

nπ

{
−
[x cosnπx

nπ

]1
0

+
2

nπ

∫ 1

0
cosnπx dx

}
=

4 cosnπ

n2π2
=

4(−1)n

n2π2
.

5. Boas Chapter 7, Problem 12.26

(Note: For Problem 12.26, you are asked to first work out Problem 12.15.)

• From Eq.(12.15), you can find

gc(α) =

√
2

π

∫ ∞
0

f(x)cosαxdx =

√
2

π

∫ a

0
(−2x+ 2a)cosαxdx

= −
√

2

π

∫ a

0
2x cosαxdx+

√
2

π

[
2a sinαx

α

]a
0

= −
√

2

π

[
2x sinαx

α

]a
0

+

√
2

π

∫ a

0

2 sinαx

α
dx+

√
2

π

2a sinαa

α
= 2

√
2

π
· 1− cosαa

α2
,

which gives

f(x) =

√
2

π

∫ ∞
0

gc(α)cosαxdα =
4

π

∫ ∞
0

1− cosαa

α2
cosαxdα.
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From the Fourier integral theorem in Boas Chapter 7, Section 12, and with a = 1, you reach

2 = f(0) =
4

π

∫ ∞
0

1− cosα

α2
dα.

6. Boas Chapter 7, Problem 13.4

(Note: For Problem 13.4(a), use the technique discussed in Boas Chapter 8, Section 2.)

• (c) Writing q(t) = qp + qc(t) = CV − CV e−t/RC , we first aim to expand qc(t) = −CV e−t/RC
in a complex exponential Fourier series. From Eqs.(8.2)-(8.3) with 2l = 1

2RC, you can write

qc(t) =
∞∑

n=−∞
cne

4inπt/RC , and

c0 =
2

RC

∫ RC/2

0
qc(t)dt = −2CV

RC

∫ RC/2

0
e−t/RCdt = −2CV (1− e−1/2),

cn =
2

RC

∫ RC/2

0
qc(t)e

−4inπt/RCdt = −2CV

RC

∫ RC/2

0
e−t/RCe−4inπt/RCdt

= −2CV

(
1− e−(

1
2
+2inπ)

1 + 4inπt

)
= −2CV

(
1− e−1/2

1 + 4inπt

)
.

Thus, you can express q(t) as

q(t) = qp + qc(t) = CV

{
1− 2(1− e−1/2)

∞∑
n=−∞

e4inπt/RC

1 + 4inπt

}
.

7. Boas Chapter 8, Problem 2.8

(Note: For Problem 2.8, read the instruction in the textbook carefully; that is, you have been
asked to plot a slope field with a computer, for example. Read Boas Chapter 8, Section 1 to
learn about the “slope field”.)

• dy
y2

= −2xdx → − 1
y = −x2 + C1 → y = 1

x2+C
→ (x, y) = (2, 1) gives C = −3.
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8. Boas Chapter 8, Problem 3.14

(Note: For Problem 3.14, again, read the instruction and the hint in the textbook carefully.)

• x′ + 1
3yx = y−

1
3 → dx

x = −dy
3y → lnx = ln y−

1
3 + C1 → xc = Cy−

1
3 . Meanwhile, plugging

xp = Ay
2
3 in the original equation, you get A = 1. Therefore, x = xc + xp = Cy−

1
3 + y

2
3 .

• Alternatively, from Eqs.(3.4) and (3.9), I =
∫
Pdy =

∫ dy
3y = 1

3 ln y → x = e−I
∫
QeIdy +

Ce−I = y−
1
3

∫
y−

1
3 y

1
3dy + Cy−

1
3 = y

2
3 + Cy−

1
3 .

9. Let us use the Fourier transform to appreciate the meaning of the Heisenberg uncertainty
principle in quantum mechanics.
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(a) Imagine an infinite wave train sinω0t clipped by shutters to maintain only N cycles of the
original waveform:

f(t) =

{
sinω0t, if |ω0t| < Nπ,

0, if |ω0t| > Nπ.

Find the amplitude function of the Fourier (exponential) transform, g(ω). Since the prefactor
may depend on the exact definition of the transform, do not worry too much about it.

(b) Find the amplitude function of the Fourier sine transform, gs(ω). Again, since the prefactor
may depend on the exact definition of the transform, do not worry too much about it.

(c) Show that, in the special case of N = 1
2 and ω0 = 1, gs(ω) becomes

gs,1(ω) =

√
2

π

ω cos
(
ωπ
2

)
1− ω2

.

(d) Now consider the limit of ω0 � 1 and ω ≈ ω0. Show that gs(ω) is approximately equal to

gs,2(ω) =
1√
2π

sin[(ω0 − ω)Nπω0
]

ω0 − ω
.

Sketch or computer plot this function for N = 1, 3, 5, 10 and an arbitrary ω0. Notice that for
N � 1, gs,2(ω) may be interpreted as proportional to what we later define as the Dirac delta
function, δ, in Boas Chapter 8, Section 11.

(Note: You do not need to provide a mathematically rigorous proof that gs,2(ω) indeed becomes
proportional to δ(ω−ω0) as N →∞. For now, observe the shape of gs,2(ω) as you vary N , and
based on your observation simply argue that lim

ω→ω0

gs,2(ω)→∞ as N →∞.)

(e) Show that the first zeros of gs,2(ω) from ω = ω0 are at ω = ω0±∆ω = ω0± ω0
N . Justify that

∆ω = ω0
N could be a good measure of the spread (or uncertainty) in frequency of our clipped

wave train. Then, establish the inverse relationship between the wave train’s pulse length (Nπ)
and the frequency spread (∆ω). Finally, using the relationship along with the assumed wave
nature of matter, explain the uncertainty principle of quantum mechanics.

(Note: You may want to briefly review the textbooks in quantum mechanics such as Grif-
fiths & Schroeter. Note that the inverse relationship found here is a fundamental property of
the finite wave train, and has little to do with any additional ad hoc postulates in quantum
mechanics. If needed, you must reference your sources appropriately with a proper citation
convention, but your answer must still be your own work in your own words. To access the
electronic resources — e.g., academic journals — off-campus via SNU library’s proxy service,
see http://library.snu.ac.kr/using/proxy.)

• (a) From Eq.(12.2) of Boas Chapter 7, you find

g(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt =
1

2π

∫ Nπ
ω0

−Nπ
ω0

sinω0t e
−iωtdt =

1

2π

∫ Nπ
ω0

−Nπ
ω0

eiω0t − e−iω0t

2i
· e−iωtdt

=
1

2πi

[
e
i(ω0−ω)Nπω0 − e−i(ω0−ω)Nπω0

2i(ω0 − ω)
− e

i(ω0+ω)
Nπ
ω0 − e−i(ω0+ω)

Nπ
ω0

2i(ω0 + ω)

]

=
1

2πi

[
sin[(ω0 − ω)Nπω0

]

ω0 − ω
−

sin[(ω0 + ω)Nπω0
]

ω0 + ω

]
.
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• (b) From Eq.(12.14) of Boas Chapter 7, you can find

gs(ω) =

√
2

π

∫ Nπ
ω0

0
sinω0t sinωt dt =

1√
2π

[
sin[(ω0 − ω)Nπω0

]

ω0 − ω
−

sin[(ω0 + ω)Nπω0
]

ω0 + ω

]
.

• (d) lim
ω→ω0

gs,2(ω) = 1√
2π

Nπ
ω0
→∞ as N →∞. Computer plots of gs,2(ω) for N = 1 and 5 can

be found below.

10. Let us consider various objects falling under the gravitational acceleration g.

(a) Consider a ball of mass m falling downward. y is the distance the ball traveled at time t
(i.e., y > 0 and êy points downward). The ball experiences a resistive force proportional to its
speed, −bv(t), where v(t) = y ′(t). With the initial condition v(0) = 0, show that the speed of
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the ball is written as
v(t) = vt

(
1− e−

b
m
t
)
,

where vt = mg/b is a terminal velocity as t→∞.

(b) Now consider a different air drag. A falling parachutist experiences a quadratic resistive
force −bv2(t) on the parachute. For simplicity, assume that the parachute opens immediately
at t = 0 when v(0) = 0. Prove that the speed of the parachutist can be written as

v(t) = vt tanh

(
t

T

)
,

where vt =
√
mg/b is now a different terminal velocity and T =

√
m/gb is the timescale that

characterizes the asymptotic approach of v(t) to vt.

(c) Let us insert numerical values in your answer in (b). For a skydiver in free fall with
m = 70 kg, find the terminal velocity with the constant of proportionality (friction coefficient)
b = 0.25 kg m−1. Then, for the same skydiver but now with her parachute open, find the
terminal velocity with b = 700 kg m−1.

(Note: If you are not familiar with the concept of terminal velocity, you may want to review
the freshman physics textbooks such as Halliday & Resnick. For (b), you may find it useful to
write your equation of motion in a separable form, dv

v2t−v2
= bdt

m .)

• (a-1) The equation of motion F = mv′ = mg − bv (with both êy and g pointing downward)

→ dv
g− b

m
v

= dt → −m
b ln

(
g − b

mv
)

= t+ C1 → v(t) = mg
b −

mC2
b e−

b
m
t = vt

(
1− e−

b
m
t
)

.

• (a-2) Alternatively, you may solve this problem using the Laplace transform discussed in
Boas Chapter 8, Section 8. Taking the Laplace transform of the equation with Y = L(v) and

v(0) = 0, you find mpY = mg
p − bY → Y = g

p(p+ b
m
)

= mg
b

(
1
p −

1
p+ b

m

)
→ v = vt

(
1− e−

b
m
t
)

.

• (b) dv
v2t−v2

= bdt
m → 1

2vt
ln
(
vt+v
vt−v

)
= bt

m → v(t) = vt
exp( 2t

T )−1
exp( 2t

T )+1
= vt tanh

(
t
T

)
.
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