
Mathematical Physics I (Fall 2022): Final Exam Solution

Dec. 10, 2022

[total 20 pts, closed book/cellphone, no calculator, 90 minutes]

1. (a) [2 pt] The periodic function f(x) below has a period 2:

f(x) =

{
1 + 2x, −1 < x < 0

1− 2x, 0 < x < 1.

Sketch several periods of f(x). Expand f(x) in a complex exponential Fourier series, and use
your result with Dirichlet’s theorem and Parseval’s theorem to show that

∞∑
n=1
n odd

1

n2
= 1 +

1

32
+

1

52
+

1

72
+ · · · = π2

8
and

∞∑
n=1
n odd

1

n4
= 1 +

1

34
+

1

54
+

1

74
+ · · · = π4

96
.

(b) [2 pt] Find the Fourier cosine transform of f(x) = e−|x| and show that f(x) is written as

f(x) =
2

π

∫ ∞
0

cosαx

1 + α2
dα .

Using this result, find the Fourier cosine transform of h(x) = 1
1+x2

. (Hint: you do not need to
perform a messy integration for this.) Show also that∫ ∞

0

dα

1 + α2
=
π

2
.
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• (a) From Eq.(8.3) of Boas Chapter 7, you can find

c0 =
1

2

∫ 1

−1
f(x)dx =

1

2

{∫ 0

−1
(1 + 2x)dx+

∫ 1

0
(1− 2x)dx

}
= 0,

cn =
1

2

∫ 1

−1
f(x)e−inπxdx =

1

2

{∫ 0

−1
(1 + 2x)e−inπxdx+

∫ 1

0
(1− 2x)e−inπxdx

}
=

1

2

{∫ 1

−1
e−inπxdx− 2

∫ 1

0
x(einπx + e−inπx)dx

}
= −2

∫ 1

0
x cosnπx dx

= −2

{[
x sinnπx

nπ

]1
0

+
1

nπ

∫ 1

0
sinnπx dx

}
=

2[1− (−1)n]

n2π2
=

{
0, if n even,

4
n2π2 , if n odd,

which yields

f(x) =
4

π2

∞∑
n=−∞
n odd

einπx

n2
=

4

π2

∞∑
n=1
n odd

einπx + e−inπx

n2
.

From Dirichlet’s theorem in Boas Chapter 7, Section 6, you reach

1 = f(0) = 2 · 4

π2

∞∑
n=1
n odd

1

n2
,

and from Parseval’s theorem in Eq.(11.4) of Boas Chapter 7, you also find

1

2

∫ 1

−1
|f(x)|2 dx = 2 · 1

2

∫ 1

0
(1− 2x)2 dx =

1

3
=
∞∑
n=1

c2n = 2 · 42

π4

∞∑
n=1

1

n4
.

• (b) From Eq.(12.15) of Boas Chapter 7, you can find

gc(α) =

√
2

π

∫ ∞
0

f(x)cosαxdx =
1√
2π

∫ ∞
0

e−x(eiαx + e−iαx) dx

=
1√
2π

[
− 1

iα− 1
+

1

iα+ 1

]
=

√
2

π
· 1

1 + α2
,

which gives

f(x) = e−|x| =

√
2

π

∫ ∞
0

gc(α)cosαxdα =
2

π

∫ ∞
0

cosαx

1 + α2
dα.

It is straightforward to see in this equation that the Fourier cosine transform of h(x) = 1
1+x2

is

gc, h(α) =

√
2

π

∫ ∞
0

cosαx

1 + x2
dx =

√
π

2
e−|α|.

Also, from the Fourier integral theorem in Boas Chapter 7, Section 12, you find

1 = f(0) =
2

π

∫ ∞
0

dα

1 + α2
.
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2. Find the general solution to each of the following differential equations.

(a) [1 pt] x(ln y)y ′ − y lnx = 0

(b) [2 pt] y ′′ − 2y ′ = 4e2x + 9xe−x

(c) [1 pt] xy ′′ + y ′ = 4x

• (a) Rearranging the separable equation given, you get ln y
y dy = lnx

x dx. Integrating both sides,

you reach (ln y)2 = (lnx)2 + C.

• (b-1) The homogeneous equation y′′−2y′ = 0 gives the complementary solution yc = A+Be2x.
And from Eq.(6.18) of Boas Chapter 8, the inhomogeneous equation y′′ − 2y′ = 4e2x requires
us try a particular solution of the form yp1 = Cxe2x. Plugging yp1 back into the equation yields
C = 2.

• (b-2) Now to find a particular solution yp2 for y′′ − 2y′ = 9xe−x, from Eq.(6.24) of Boas
Chapter 8 you try a particular solution of the form yp2 = e−x(Dx + E). Plugging this trial
solution into the equation, you get 3Dxe−x+ (3E−4D)e−x = 9xe−x, which leads to D = 3 and
E = 4. Combining all the above, you reach y = yc+yp1 +yp2 = A+Be2x+ 2xe2x+ (3x+ 4)e−x.

• (c-1) Combining the technique in Eq.(7.2) of Boas Chapter 8, Section 7 (i.e., Case (a)) and
in Eq.(3.9) of Boas Chapter 8, Section 3, we attempt to find a general solution of the equation
xp′ + p = 4x or p′ + 1

xp = 4 with p = y′. From Eq.(3.9) of Boas Chapter 8, I =
∫
Pdx =∫

dx
x = lnx → p = e−I

∫
QeIdx+ C1e

−I = 1
x

∫
4xdx+ C1

x = 2x+ C1
x . Therefore, y =

∫
pdx =

x2 + C1 lnx+ C2.

• (c-2) Alternatively, you may regard the given equation as the Euler-Cauchy equation discussed
in Eqs.(7.17)-(7.19) of Boas Chapter 8, Section 7 (i.e., Case (e)). Inserting xy′ = dy

dz and x2y′′ =
d2y
dz2
− dy

dz into the equation x2y′′+xy′ = 4x2 gives d2y
dz2

= 4x2 = 4e2z. Thus, from y(z) = yc+yp =
C1z + C2 + e2z, you get y(x) = C1 lnx+ C2 + x2.
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3. (a) [1pt] One of the ordinary differential equations that frequently appears in physics has the
form y ′′ + f(y) = 0. Show that the equation is integrated to yield

1

2
y′ 2 +

∫
f(y)dy = constant .

(b) [2 pt] An electron of mass m is accelerated in the electric field of a positively charged sphere.
The force between them is inversely proportional to the square of the distance r between the
electron and the center of the sphere (with the constant of proportionality k). Find the electron’s
differential equation of motion. Now, let the electron fall from rest at infinity to the sphere at
time t = 0. By using the method established in (a), find the electron’s velocity v(r) as a function
of r before it reaches the surface of the sphere. (Note: Make sure to choose the appropriate sign
— e.g., a positive sign indicates outward motion.)

(c) [1 pt] Finally, consider a motion of an electron that is shot radially inward from r0 at t = 0,

with initial velocity v0 = −
√

2k
mr0

. Find the electron’s velocity v(r). Utilizing the fact that the

equation you found is separable, obtain r(t) or t(r).

• (a) See Eq.(7.13) of Boas Chapter 8, Section 7 (i.e., Case (c)).

• (b) The Newtonian equation of motion is integrated to yield

m
d2r

dt2
= − k

r2
→ 1

2

(
dr

dt

)2

= −
∫

kdr

mr2
+ C → 1

2
[v(r)]2 − 0 =

[
k

mr

]r
∞

=
k

mr
− k

m(∞)
,

where the integration constant is found from the initial condition. Therefore, v(r) = −
√

2k
mr .

• (c) Now, integrating the equation of motion inward from r0 to r,

1

2

(
dr

dt

)2

= −
∫

kdr

mr2
+ C → 1

2
[v(r)]2 − 1

2
v20 =

[
k

mr

]r
r0

=
k

mr
− k

mr0
,

which leads to v(r) = −
√

SSv
2
0 + 2k

m

(
1
r − S

S
1
r0

)
= −

√
2k
mr again. Note that the only difference

between (b) and (c) is when we set t = 0; that is, at r =∞ in (b), but at r = r0 in (c). Thus,

v(r) =
dr

dt
= −

√
2k

mr
→ dt = −

√
mr

2k
dr →

∫ t

0
dt = −

∫ r

r0

√
mr

2k
dr

→ t = t(r) = −2

3

√
m

2k

[
r

3
2

]r
r0

=
2

3

√
m

2k

(
r

3
2
0 − r

3
2

)
.

4. (a) [2 pt] The following differential equation describes the response of a mechanical system
to a unit impulse at time t = t0 (> 0). Assuming y0 = y′0 = 0 at t = 0 and using the Laplace
transform, find the response y(t). (Note: The table of Laplace transforms is in the last page of
this exam.)

y ′′ + 2y ′ + 10y = δ(t− t0)
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(b) [2 pt] A string of length l has a zero initial velocity and the initial displacement y0(x) =
x(l−x) as shown below. Find the displacement as a function of position x, time t, and the wave
velocity v that depends on the tension and the linear density of the string.

• (a) With Eqs.(9.1)-(9.2) and (11.7) of Boas Chapter 8, or L27 in the Laplace transform table
(Boas p.469-471), we transform the given differential equation into

p2Y + 2pY + 10Y = L[δ(t− t0)] = e−pt0 → Y =
e−pt0

(p+ 1)2 + 32
.

From y = L−1(Y ) and L13 and L28 in the Laplace transform table, you then acquire

y(t) =

{
1
3e
−(t−t0) sin 3(t− t0), t > t0

0, t < t0.

• (b) We write the solution in the form of Eq.(4.7) of Boas Chapter 13 as

y =
∞∑
n=1

bn sin
nπx

l
cos

nπvt

l
.

At t = 0 you want

y0(x) =
∞∑
n=1

bn sin
nπx

l
= x(l − x)

from which you can get the Fourier coefficients as

bn =
2

l

∫ l

0
y0(x) sin

nπx

l
dx =

2

l

∫ l

0
x(l − x) sin

nπx

l
dx

=
2

l

{[
−lx l

nπ
cos

nπx

l

]l
0

+
XXXXXXXXX

∫ l

0
l
l

nπ
cos

nπx

l
dx

}
+

2

l

{[
x2

l

nπ
cos

nπx

l

]l
0

−
∫ l

0
2x

l

nπ
cos

nπx

l
dx

}

= −
HHH

HHH

2

l

l3

nπ
cosnπx +

HHH
HHH

2

l

l3

nπ
cosnπx − 4

nπ

{XXXXXXXX

[
x
l

nπ
sin

nπx

l

]l
0

−
∫ l

0

l

nπ
sin

nπx

l
dx

}
= − 4l2

n3π3
(cosnπ − 1) =

{
0, if n even,
8l2

n3π3 , if n odd.

Therefore,

y(x, t) =
∞∑
n=1
n odd

8l2

n3π3
sin

nπx

l
cos

nπvt

l
.
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5. [2 pt] Let us find the light path using Fermat’s principle in an atmosphere where the speed
of light increases in proportion to the height y (i.e., the index of refraction is proportional to
y−1). Write down the transit time from (x1, y1) to (x2, y2) as an integral, and solve the Euler
equation to make the integral stationary. If needed, change the independent variable to make
the equation simpler. You will find that this light path is the arc of a circle whose center is on
the y = 0 line. (Note: This problem simulates a condition for a so-called superior mirage — as
opposed to an inferior mirage — or a condition near a black hole’s surface where one can model
that the speed of light drastically changes with y, even approaching zero at the event horizon.)

Superior mirage (left; 위 신기루) & inferior mirage (right; 아래 신기루) [image credits: nytimes.com, epod.usra.edu]

• As in Example 1 of Boas Chapter 9, Section 3 or in the text at the beginning of Problems in
Boas Chapter 9, Section 1, the time of transit t is written as

t = c−1
∫
nds ∝ I =

∫ x2

x1

√
1 + y ′2

y
dx.

As in Example 3 of Boas Chapter 9, Section 3, with x′ = dx
dy = 1

y′ , we change the variable as

I =

∫ x2

x1

√
1 + y′2

y
dx =

∫ y2

y1

√
1 + y′2

y
x′dy =

∫ y2

y1

√
x′2 + 1

y
dy.

Now, the Euler equation becomes

∂F

∂x
− ∂

∂y

∂F

∂x′
= 0 =

∂

∂y

(
x′

y
√
x′2 + 1

)
→ x′2

y2(x′2 + 1)
= C2

1 → x′ =
C1y√

1− C2
1y

2
.

Integrating both sides

x =

∫
C1ydy√
1− C2

1y
2

= − 1

C1

√
1− C2

1y
2 + C2 = −

√
1

C2
1

− y2 + C2,
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from which you acquire (x− C2)
2 + y2 = ( 1

C1
)2.

Superior mirage (left) and inferior mirage (right) [image credits: Wikipedia commons]

6. (a) [1 pt] Throughout the semester we discussed many examples in which simple mathematical
concepts are utilized to understand seemingly complex physical or daily phenomena. In this
regard, five of your peers presented their term projects in the last class of the semester. Describe
the key idea of one of the presentations you found interesting. A paragraph of at least 3-4
sentences is expected to clearly convey the core idea of his/her term project. If you were one of
the presenters, please choose someone else’s.

(b) [1 pt] We also discussed how one can speedily gain insights into a physical phenomenon,
by using techniques such as order-of-magnitude estimation and/or dimensional analysis. Invent
and solve your own order-of-magnitude estimation problem. Start with a paragraph of at least
2-3 sentences to clearly describe the problem setup. Make a physically intuitive, yet simple
problem so that you can explain your problem and solution to a fellow physics major student
in ∼3 minutes. Use diagrams if desired. Do not plagiarize another person’s idea.

• (a) See the student presentation slides in Lecture 15-1 that include the collection of term
project presentations by five students on December 6.

• (b) See the class slides for Lecture 14-2 that include many example problems, and the grading
guideline.
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