
Mathematical Physics I (Fall 2021): Homework #5 Solution

Due Nov. 19, 2021 (Fri, 23:00pm)

[0.5 pt each, total 5 pts]

1. Boas Chapter 8, Problem 5.9

(Note: For Problems in Sections 5 and 6, read the instruction in the textbook carefully; that
is, you have been asked to find a computer solution and reconcile differences, if any.)

• From Eqs.(5.16)-(5.17), and with 2 ± 3i as the roots of the auxiliary equation, you get y =
e2x(Aei3x +Be−i3x), or e2x(C sin 3x+D cos 3x), or y0e

2xsin(3x+ γ).

2. Boas Chapter 8, Problem 6.8

• From Eq.(6.18), and with ±4 as the roots of the auxiliary equation of its homogeneous
counterpart, you get y = yc + yp = Ae4x +Be−4x + Cxe4x. Plugging yp back into the equation
yields C = 5.

3. Boas Chapter 8, Problem 6.14

• As in Example 6 of Section 6, Y ′′+8Y ′+25Y = 120ei5x gives Yp = −3iei5x. From yp = Im(Yp),
you reach y = yc + yp = e−4x(A sin 3x+B cos 3x)− 3 cos 5x.
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4. Boas Chapter 8, Problem 6.35

• As in Example 9 of Section 6, (D2 − 1)y = 1
2(ex − e−x) gives y = yc + yp1 + yp2 = Aex +

Be−x + 1
4(xex + xe−x) = Aex +Be−x + 1

2xcoshx.

5. Boas Chapter 8, Problem 7.3

(Note: You may continue to utilize computer solutions to validate your answers to problems in
Sections 7 to 9.)

• From Eq.(7.3) for Case (b), inserting y′ = p and y′′ = pdpdy into the given differential equation

gives 2y ·pdpdy = p2 → 2dp
p = dy

y → ln p2 = ln y+C1 → p2 = C2|y| =
(
dy
dx

)2
→ dy

|y|1/2 = C3dx

→ 2|y|
1
2 = C3x + C4 → y = A(x + B)2. This seemingly “general” solution does not include

an obvious solution by inspection, y = constant, as we discussed in Example 3 of Section 2.

6. Boas Chapter 8, Problem 7.17

• From Eqs.(7.18)-(7.19) for Case (d), inserting xy′ = dy
dz and x2y′′ = d2y

dz2
− dy

dz into the given

differential equation gives d2y
dz2
− 16y = 8x4 = 8e4z — which became very similar to Problem 6.8

above. Thus, from y(z) = yc + yp = Ae4z +Be−4z + ze4z, you get y(x) = Ax4 +Bx−4 + x4lnx.
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7. Boas Chapter 8, Problem 8.11

• In order to utilize L7-L8 in the Laplace transform table (Boas p.469-471), we reshape the
given formula as

Y =
3p+ 2

3p2 + 5p− 2
=

3p+ 2

(3p− 1)(p+ 2)
=

p+ 2
3

(p− 1
3)(p+ 2)

=
p

(p− 1
3)(p+ 2)

+
2
3

(p− 1
3)(p+ 2)

.

Therefore, y = L−1(Y ) is found to be

y =
−1

3e
t/3 − 2e−2t

−1
3 − 2

+
2
3(et/3 − e−2t)

2 + 1
3

=
3

7

(
1

3
et/3 + 2e−2t +

2

3
et/3 − 2

3
e−2t

)
=

3

7
et/3 +

4

7
e−2t.

8. Boas Chapter 8, Problem 9.14

•With Eqs.(9.1)-(9.2) and L6 in the Laplace transform table, we transform the given differential
equation into

p2Y − py0 − y′0 − 4pY + 4y0 = L(−4te2t) → p2Y − 4pY − 1 = − 4

(p− 2)2
→ Y =

1

(p− 2)2
,

from which you acquire y = L−1(Y ) = te2t.

9. Let us apply the Laplace transform to a few physical examples.

(a) Consider a mass m attached to one end of an ideal, massless spring of spring constant k. The
free end of the spring is fixed in space and the mass is oscillating under the spring’s influence.
The displacement x(t) from the equilibrium point (see figure) satisfies the equation of motion

mẍ(t) + kx(t) = 0,

with initial conditions x(0) = x0 and ẋ(0) = 0. Using the Laplace transforms, find x(t).
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(b) We then subject the system in (a) to the damping proportional to the velocity as

mẍ(t) + bẋ(t) + kx(t) = 0,

with initial conditions x(0) = x0 and ẋ(0) = 0. Using the Laplace transforms, recover x(t)
that you found in classical mechanics classes, e.g., Eq.(3.40) of Thornton & Marion (5th ed.).
Assume underdamped oscillation, i.e., b2 < 4mk.

(c) We now go back to the setup in (a) again. Starting at t = 0, the free end of the unstretched
spring experiences a constant acceleration a, away from the mass m at rest. Using the Laplace
transforms, find the position of m. Also find its form in the limit of small t.

(Note: The differential equations here should look familiar to most of you from your classical
mechanics classes. If not, you may want to briefly review the textbooks such as Thornton &
Marion or Taylor. For (c), the motion of m can be divided into two parts: the accelerated
motion of point A defined as where m would have been had the spring been replaced by a string
(see figure) + the oscillation of m about A — expressed as d(t) and x(t), respectively.)

• (a) Using Eqs. (9.1)-(9.2) of Boas Chapter 8, you get p2X − px0 + ω2
0X = 0 with ω0 =

√
k
m ,

which has the solution X = x0 · p
p2+ω2

0
. From L4 of the Laplace transform table (Boas p.469-471),

you reach x(t) = x0cosω0t.

• (b) p2X − px0 + 2βpX − 2βx0 + ω2
0X = 0 with β = b

2m . Therefore,

X = x0 ·
p+ 2β

p2 + 2βp+ ω2
0

= x0 ·
p+ 2β

(p+ β)2 + ω2
1

= x0

[
p+ β

(p+ β)2 + ω2
1

+
β

ω1

ω1

(p+ β)2 + ω2
1

]
where ω1 =

√
ω2
0 − β2. From L13-L14 of the Laplace transform table, you can show that

x(t) = x0e
−βt[cosω1t+ β

ω1
sinω1t] = x0e

−βt
(
ω0
ω1

)
cos (ω1t− δ) with tan δ = β

ω1
.

• (c-1) Let us write the position of m as x̃(t) = d(t)+x(t) = 1
2at

2 +x(t). Inside the accelerating
system (gray box in the figure), m experiences the fictitious force −ma. Therefore, the equation
of motion becomes mẍ(t) + kx(t) = −ma with initial conditions x(0) = 0 and ẋ(0) = 0 (note
that x(t) is not from its new equilibrium point; the spring was initially unstretched). The

Laplace transform gives p2X + ω2
0X = −a

p → X = −a/p
(p2+ω2

0)
= − a

ω2
0
· ω2

0

p(p2+ω2
0)

. From L15 of the

Laplace transform table, you find x(t) = − a
ω2
0
(1− cosω0t), thus x̃(t) = 1

2at
2 − a

ω2
0
(1− cosω0t).

• (c-2) x̃(t) ' 1
2at

2 − a
ω2
0
(1− 1 +

ω2
0t

2

2! −
ω4
0t

4

4! ) =
aω2

0
24 · t

4 for ω0t� 1.
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10. In the beginning of Boas Chapter 8, Section 7, the author discusses many methods of
solving various types of second-order ODEs. Among them is Lagrange’s method of variation of
parameters to find a particular solution of an inhomogeneous ODE.

(a) Let us start with a homogeneous second-order linear ODE in the form of

y′′ + p(x)y′ + q(x)y = 0

where p and q are continuous functions of x. Let us assume that we know its two independent
solutions, y1 and y2. Now, for the inhomogeneous second-order linear ODE of

y′′ + p(x)y′ + q(x)y = f(x),

show that a particular solution yp(x) is written as

yp(x) = −y1(x)

∫
y2(x

′)f(x′)

W (x′)
dx′ + y2(x)

∫
y1(x

′)f(x′)

W (x′)
dx′

where W (x′) is the Wronskian of y1 and y2, W (y1(x
′), y2(x

′)).

(Note: You may start with yp = c1(x)y1(x) + c2(x)y2(x) and follow the step-by-step instruction
given in Boas Chapter 8, Problem 12.14(b) that leads to the set of two conditions for c1 and
c2: c′1(x)y1(x) + c′2(x)y2(x) = 0 and c′1(x)y′1(x) + c′2(x)y′2(x) = f(x). Notice that the first
equation of this set is our “imposed” condition, while the second one is what you get if you
plug y′p = {c′1(x)y1(x) + c′2(x)y2(x)}+ {c1(x)y′1(x) + c2(x)y′2(x)} = c1(x)y′1(x) + c2(x)y′2(x) and
the corresponding y′′p into our ODE above. In case you wonder, no knowledge about the Green
function in Section 12 is needed to tackle this problem.)

Now, utilizing the given solution of the homogeneous equation, find a solution of each of the
following inhomogeneous ODEs. (More exercise problems in Chapter 8, Problems 12.15-18.)

(b) y′′ + y = secx ; with y1 = cosx and y2 = sinx

(c) (1− x)y′′ + xy′ − y = (1− x)2 ; with y1 = x and y2 = ex

• (b) y(x) = C1cosx+ C2sinx+ yp(x) = (C1 + ln|cosx|)cosx+ (C2 + x)sinx

• (c) y(x) = C1x+ C2e
x + yp(x) = C ′1x+ C2e

x + x2 + 1
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