
Classical Mechanics II (Fall 2020): Homework #1

Due Sep. 29, 2020

[0.5 pt each, total 6 pts]

1. Thornton & Marion, Problem 9-15

(Note: For Problem 9-15, discuss the difference between its setup and the one in Problem 9-21.
Once you have the equation of motion, you may find it useful to assume that ẋ2 can be written
as ẋ2 =

∑
n anx

n. This is a so-called power series solution — similar in philosophy to the
Frobenius’ power series method covered in e.g., Chapter 7.5 of Arfken, Weber & Harris, 7th ed.,
2013.)

• F = mẍ+ṁẋ = mg → ẍ+ ẋ2

x = g → with ẋ2 =
∑

n anx
n, you can write ẍ = dẋ

dx ·
dx
dt = ẋdẋdx =

1
2
d(ẋ2)
dx =

∑
n

1
2nanx

n−1 and ẋ2

x =
∑

n anx
n−1. Equating the coefficients you get 1

2nan + an = g
only if n = 1. Therefore, the only nonzero coefficient is a1 = 2

3g, which means ẋ2 = 2
3gx.

2. Thornton & Marion, Problem 9-20

• The energy conservation,
(
m
2

)
ga = 1

2mv
2, yields v =

√
ga.

3. Thornton & Marion, Problem 9-43

• Following the notations in Figure 9-10, the conservation of momentum and energy means: (i)
mu1 = mv1 cos π4 +4mv2 cos ζ, (ii) 0 = mv1 sin π

4−4mv2 sin ζ, and (iii) 1
2mu

2
1× 5

6 = 1
2mv

2
1+2mv2

2.

1



• This reduces to a set of two equations: (i)’−u2
1 = v2

1−16v2
2−
√

2u1v1 and (ii)’ 5u2
1 = 6v2

1+24v2
2,

from which we acquire v1 =
√

2+
√

146/3

10 u1 ' 0.84u1 and tan ζ = 4v2 sin ζ
4v2 cos ζ = v1/

√
2

u1−v1/
√

2
' 1.46.

4. Thornton & Marion, Problem 9-45

• Use Eqs.(9.125) and (9.69) to eliminate ψ’s but leave only θ’s and x’s.

5. Thornton & Marion, Problem 9-62

(Note: For Problem 9-62, note that we do not assume a constant burn rate of the fuel.)

• From Eq.(9.160) with v̇ = 0 and g = 1
6gE , one gets −1

6mgE = udmdt →
∫ t

0 dt = − 6u
gE

∫m
m0

dm
m .

6. Thornton & Marion, Problem 9-64

(Note: For Problem 9-64(b), use Eq.(2.21) with parameters given in Problem 9-63(b). For
Problem 9-64(c), prove and use g(y) = 9.8

(1+y/RE)2
m s−2 where y is the altitude above Earth

and RE is Earth’s radius.)

• (a) Note that we are trying to find the maximum height reached; the rocket keeps going up
after the burnout. So for all subsequent problems, there always are two phases you need to
consider: (1) the first phase with constant nonzero α, and (2) the second phase with α = 0.

• (b) Expanding from Eqs.(9.161) and (9.162), mÿ = uα−mg − 1
2cwρAẏ

2.

7. Thornton & Marion, Problem 10-2

(Note: For Problem 10-2, investigate the problem in two ways by using (a) an inertial reference
frame x − y centered on the initial position of the tire’s center, and (b) a rotating noninertial
reference frame x′ − y′, as illustrated below.)

• (a) If we adopt the x−y frame centered on the initial position of the tire’s center, this question
may remind some students of Problem 10 in Homework #1 of Classical Mechanics 1 (2020). The
point P ’s velocity measured in the x− y frame becomes vf,P = (−v− r0θ̇ cos θ) êx− r0θ̇ sin θ êy
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with r0θ̇ = v. From this, one can show |af,P | =
∣∣∣dvf,P

dt

∣∣∣ = a
√

2 + 2 cos θ + v4

a2r20
− 2v2 sin θ

ar0
which

peaks at θ = 2π − tan−1
(
v2

ar0

)
.

• (b) Now, we adopt the x′ − y′ frame rotating around the z′-axis aligned with the tire’s axle.
Using Eq.(10.23) with vr = ar = 0, ω = ωê′z = v

r0
ê′z, ω̇ = ω̇ê′z = a

r0
ê′z, R̈f = −acos θ ê′x +

asin θ ê′y, and r = r0 ê
′
y for the point P on the y′-axis, one gets af,P = −(a + acos θ) ê′x +

(asin θ− v2

r0
)ê′y. One can again show |af,P | = a

√
2 + 2 cos θ + v4

a2r20
− 2v2 sin θ

ar0
, the same as in (a).

8. A car of mass m travels with speed v on a horizontal, circular track of radius R. h is the
height of the center of mass C above the ground, and 2d (� R) is the separation between the
inner and outer wheels. The track is sufficiently rough that the wheels are not skidding. Show

that the car will overturn if v is larger than
√

gRd
h . You are asked to consider the problem

using (a) an inertial reference frame fixed on the ground and (b) a noninertial reference frame
rotating at the same rate as the car.

• (a) When the car is about to overturn, no normal or frictional force acts on the inner wheel.
So, the normal force acting on P (see the figure) is NP = mg, and the frictional force on P

becomes the centripetal force, FP = mv2

R . One last condition to add is that there is no net

torque about C, meaning FPh = NPd. Combining the equations, one arrives at mv2h
R = mgd.

• (b) Again, when the car is about to overturn, no normal or frictional force acts on the inner
wheel. So, the normal force acting on P is NP = mg. Now the fictitious centrifugal force acting
on C, FC = mv2

R , should be balanced by the frictional force on P , FP , because the car is at rest

in this frame. As there is no net torque about either C or P , one again reaches mv2h
R = mgd.

9. A rod of length b rotates with a constant angular speed ω about the z-axis through one end
of the rod (point O) and perpendicular to the plane of rotation. A small bead of mass m, with
a hole through it, is threaded on this frictionless rod.

(a) Write down the equation of motion of the bead in the x′ − y′ frame rotating with the rod.
Express the force that the rod exerts on the bead.

(b) The bead is now placed at O then pushed down the rod with an initial speed of b ω with
respect to the rod. Calculate the time and velocity when the bead leaves the rod. In your
answer you may choose to leave the trigonometric or hyperbolic functional form, or the inverse
function thereof — e.g., sin(�), sin−1(�), sinh(�), sinh−1(�).

(c) The bead is now placed at the midpoint of the rod, and released from rest with respect to
the rod. Calculate the time and velocity when the bead leaves the rod.
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• (a) F = 2mωẋ′ê′y.

• (b) From Eq.(10.25), mẍ′ = mω2x′. Then from Eq.(C.10) of Thornton & Marion, x′(t) =
c1e

ωt+ c2e
−ωt, which becomes x′(t) = b sinh(ωt) considering the initial conditions x′(0) = 0 and

ẋ′(0) = b ω. Therefore, the bead leaves the end of the rod at t1 = 1
ω sinh−1(1).

• (c) x′(t) = b
2 cosh(ωt), t2 = 1

ω cosh−1(2)

10. A spherical satellite of radius r and mass M(t) is moving with velocity v(t) through an
atmosphere of uniform density ρ. The atmospheric particles are of identical sizes and masses, all
initially at rest. Show that the retarding force on the satellite is written as Fr = −ρ(πr2)v2(t)
in both of the following cases (resembling Eq.(2.21) in Thornton & Marion).

(a) Each atmospheric particle strikes the satellite and adheres to its surface.

(b) Each atmospheric particle strikes the satellite and bounces off from it elastically (see the
figure below).

• (a) From momentum conservation, Mv = (M + dM)(v + dv) → thus, Fr = M dv
dt = −v dMdt

where dM = ρ(πr2)vdt.

• (b-1) When a particle strikes the satellite’s surface at angle θ measured from the x-axis (see
the figure), the momentum conservation in the x direction gives −mv = ∆px +mvcos 2θ. Note
that we now work in the frame where the satellite is at rest, and we don’t have to worry about
the momentum transferred in other directions perpendicular to the x-axis (why?).

• (b-2) Meanwhile, the number of particles hitting the surface at [θ, θ + dθ] in dt is dN =( ρ
m

)
2π(rsin θ)d(rsin θ)vdt.

• (b-3) Therefore, Fr =
∫

∆pxdN
dt =

∫ π
2

0 (−mv −mvcos 2θ) ·
( ρ
m

)
2π(rsin θ)d(rsin θ)v.
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11. Work out Example 9.2. In particular, prove explicitly the statements made in the last
paragraph (the bottom of p.335) about the continuity — or discontinuity — of the tension on
either side of the bottom bend, for both free fall and energy-conserving cases.

• For the free fall case, T1 = TEq.(9.16) − ρ
(
b+x

2

)
g = ρgx = 1

2ρẋ
2.

• For the energy-conserving case, T1 = TEq.(9.18) − ρ
(
b+x

2

)
g = ρg

4 ·
2bx−x2
b−x = 1

4ρẋ
2.

12. In the class we discussed the kinematics of elastic collisions. Starting from the initial energy
of the system in the LAB and CM systems, Eqs.(9.78) and (9.79), follow step by step the logical
procedure that leads to Eq.(9.87a), the LAB energy of the particle m1 written with the CM
scattering angle θ. Continue to derive Eqs.(9.88), (9.90), (9.91) and (9.92) — which were briefly
discussed in the class but left for your exercise. An ambitious student seeking an additional
+0.5 point may venture to derive Eq.(9.87b).

• From Eqs.(9.74) and (9.87a), T2
T0

= 1 − T1
T0

= 2m1m2
(m1+m2)2

(1 − cos θ) = 2m1m2
(m1+m2)2

(1 + cos 2ζ) =
4m1m2

(m1+m2)2
cos2 ζ.
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