Classical Mechanics IT (Fall 2020): Homework #4

Due Dec. 3, 2020

[0.5 pt each, total 6 pts, turn in as a single pdf file to eTL before the class starts]

e By turning in your homework, you acknowledge that you have not received any unpermitted
aid, nor have compromised your academic integrity during its preparation. (Remember the
SNU College of Natural Sciences Honor Code!)

e Only handwritten answers are accepted except for numerical problems — for which you print
out and turn in not just the end results (e.g., plots) but also the source codes.

e For some problems you may want to use formulae in Appendices D and E, and/or more
extensive references such as Zwillinger.

1.-8. Thornton & Marion, Problems 13-9, 13-19, 13-22, 14-6, 14-18, 14-33, 14-37, 14-42

(Note: For Problem 13-9, first review Chapter 13.5 and work out Example 13.2, which was
briefly discussed in the class, but left for your exercise. In Problem 14-6, as in other examples
and problems, unprimed quantities such as Ax is measured in the unprimed system K. For
Problem 14-18, consider the choice of systems below, in which the angle between the light source
and the direction of the relative motion is again # as in Example 14.11.)
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Thornton & Marion, Problem 14-18 (compare with Figure 14-8)



9. Consider a triangular pulse on a finite, dissipationless string discussed in the class. Here we
will investigate the general traveling wave solution to the wave equation.

(a) First, let us re-examine the plucked string described in Figure 13-1 and Example 13.1. Using
a trigonometric identity sin A cos B = % [sin(A + B) + sin(A — B)], show that Eq.(13.13) can be
written in the form of & [f(z + vt) + f(z — vt)], or Eq.(13.62b). Find f(X).

(b) By a numerical calculation using e.g., the first 5 nonzero terms of the series to get a moderate
approximation, draw the shapes of (i) % f(z+vt), (i) 3 f(z—vt), and (iii) the combined actual
string shape. You may plot the position of the string at e.g., 8 equally spaced times from ¢ = 0
to t = T, where T is the period of the string’s motion. You may certainly reuse what you
developed for Problem 13-3 in Homework #3.

(c) Now consider a slightly different initial configuration. A string of length L = 8 is fixed at
both ends, and is initially given a small triangular displacement shown in the figure below. The
string is then released from rest at ¢t = 0. Describe the vibration of the string in terms of normal
modes. Find the Fourier coefficients, Eq.(13.8).

(d) By a numerical calculation using e.g., the first 5 nonzero terms of the series to get a moderate
approximation, see how the wave propagates in time. You may plot the position of the string at
e.g., 20 equally spaced times from ¢t = 0 to t =T, where T is the period of the string’s motion.
What is T'? In your first few snapshots, can you reproduce the behavior seen in Figure 13-37
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10. A particle (particle 1) of mass m and relativistic total energy E; collides with an identical
particle (particle 2) initially at rest. The particles collide to reach a final state containing N
particles of mass m each (e.g., a collection of particles and anti-particles, all with mass m).
Find the threshold energy, or the minimum value of E;, for which this process can occur. Show
that more energy would be needed to produce more particles.

11. A spaceship is initially at rest in the LAB frame. At a given instant (LAB clock ¢ = 0
and the spaceship’s clock ¢ = 0), it starts to accelerate with the constant proper acceleration
a along the z/- and zj-axes. Here, the proper acceleration is defined as follows: Let ¢ be the
time coordinate in the spaceship’s frame. If the proper acceleration is a, then at time t + dt,
the spaceship is moving at speed adt relative to the frame it was in at time ¢.

(a) Show that the relative speed of the spaceship and the LAB frame at the spaceship’s time ¢
is written as v(t) = ctanh (%). (Note: You may start by setting v; = v(t) and vy = adt in the
velocity addition formula Eq.(14.98) of Thornton & Marion, and expand v(t + dt) to first order
in dt.)

(b) Later on, an observer in the LAB frame measures ¢’ and ¢. Find the relation between ¢’ and
t? Check if your formula yields ¢ = ¢ in the nonrelativistic limit.



(¢) Find the four-vector velocities V/ and V of the spaceship in the LAB frame and the space-
ship’s frame, respectively. Show that they transform like four-vectors between the two frames.

12. To understand the gravitational shift of spectral lines, let us consider an elevator of height
h starting to move upward from rest at ¢ = 0 with an acceleration a = g = 9.8m/s? in free
space (no gravity) with a photon source S on its floor. A photon of frequency vy is emitted at
t = 0 and travels upward as seen in the figure below.

(a) An observer R fixed to the elevator’s ceiling — thus accelerating with the elevator — receives
the photon with Doppler-shifted frequency v. Show that the frequency difference is given by
Av =v —yy >~ —%21/0 when we can assume /gh < c¢. (Note: You may want to consider two
inertial reference frames — K’ moving at the same velocity as the elevator when the photon is
emitted, and K moving at the same velocity as the elevator when the photon is received — and
the transformation of a four-vector momentum between K’ and K.)

(b) Combining the Equivalence Principle (what is this?) and the result of the above thought
experiment, explain the gravitational redshift (and the gravitational time dilation). Notice that,
in your gravitational redshift formula, gh is the change in the Newtonian gravitational potential
experienced by the photon.

(c) What do you expect if a photon falls from the ceiling rather than moving upward from the
floor?

(d) Two people stand a distance h apart. They simultaneously start accelerating in the same
direction (along the line connecting the two) with the same proper acceleration a. At the instant
they start to move, how fast does each person’s clock tick when observed by the other person?
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13. [For additional +0.5pt] Einstein’s Speed of Light Postulate states that the speed of light
c is a universal constant independent of any relative motion of the source and the observer,
implying that no information can be transmitted faster than ¢ (i.e., signal velocity < c). Write
a short essay that includes your thoughts and research about the following questions: (i) Can
the phase velocity be faster than ¢, and if so, why does it not contradict the Speed of Light
Postulate? (i) Can the group velocity be faster than ¢, and if so, why does it not contradict
the Postulate? (i) Can the wvelocity on a screen described in p.576 of Thornton & Marion be
faster than ¢, and if so, why does it not contradict the Postulate?

(Note: 2-3 paragraphs or more are expected to clearly demonstrate what you learned from
various scientific articles. You must reference your sources appropriately with a proper citation



convention, and your answer must be your own work in your own words. Sources like Wikipedia
or YouTube are not scientific literatures. To access the electronic resources — e.g., academic
journals — off-campus via SNU library’s proxy service, see http://library.snu.ac.kr/using/proxy.
You may start by reviewing p.541-542 and p.576 of Thornton & Marion. Other articles that
may be a good starting point for your research include: (i) Rothman, M. A.; 1960, “Things that
go faster than light”, Scientific American, 203/1, 142-152, (i) Feinberg, G., 1970, “Particles
that go faster than light”, Scientific American, 222/2, 68-75. Obviously, your literature search
should not stop there.)



