
Classical Mechanics II (Fall 2020): Homework #3

Due Nov. 17, 2020

[0.5 pt each, total 6 pts, turn in as a single pdf file to eTL before the class starts]

• By turning in your homework, you acknowledge that you have not received any unpermitted
aid, nor have compromised your academic integrity during its preparation. (Remember the
SNU College of Natural Sciences Honor Code!)

• Only handwritten answers are accepted except for numerical problems – for which you print
out and turn in not just the end results (e.g., plots) but also the source codes.

• For some problems you may want to use formulae in Appendices D and E, and/or more
extensive references such as Zwillinger.

1.-8. Thornton & Marion, Problems 12-6, 12-11, 12-15, 12-21, 12-22, 12-27, 13-3, 13-6

(Note: For Problem 12-6, explain how one of the normal modes is damped but the other is
not. For Problem 12-15, discuss how your equations of motion differ from those in Problem
12-13. Discuss also how the circuit in this problem is the “equivalent electrical circuit” of
the system in Problem 12-6 — a term explained in Section 3.7 of Thornton & Marion — if
L1 = L2 = L and C1 = C2 = C. For Problem 12-22, you may want to explain or justify why
you do not have to consider the gravitational potential energy of the plate, when x3 is defined
as a displacement from the equilibrium position. For Problem 13-6, refer to Example 13.1 for
more explanation about qunatifying the energy in each of the excited modes – the fundamental
and the harmonics.)

9. A block of negligible size and mass m is attached to a wedge of mass M by a massless spring
of original unstretched length l and spring constant κ, as shown in the figure. The wedge’s
inclined surface makes an angle α with the horizontal. All surfaces are frictionless. g is the
gravitational acceleration.

(a) When both the block and the wedge are at rest, find the equilibrium position of the block
along the inclined surface, s0 (see the figure).
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(b) Assuming small oscillations, find the system’s Lagrangian and equations of motion. (Note:
As in Problem 12-22 of Thornton & Marion, you may want to explain or justify why you do not
have to consider the gravitational potential energy of the block, when you adopt a generalized
coordinate s for the block, defined as a displacement from s0 along the inclined surface.)

(c) Determine the eigenfrequencies and describe the corresponding normal mode motions.

10. Consider a system of masses constrained to move on a frictionless, horizontal hoop. Massless
springs connect the masses and wrap around the hoop. For simplicity, let us set the radius of
the hoop to be 1. Assume small oscillations.

(a) First, consider the case of two identical masses m connected by springs with spring constant
κ (see figure (i) below). Determine the eigenfrequencies and describe the normal mode motions.

(b) Now one mass is driven by an external sinusoidal force, Fd cosωdt. Find the particular

solution for the motion of the masses. In particular, explain what happens if ωd =
√

2κ
m .

(c) Let us now consider three masses connected by three springs (see figure (ii) below). In the
following figure, the masses are shown at their equilibrium positions, located at 120◦ angular
separations. First, for m1 = m2 = m and κ1 = κ2 = κ, determine the eigenfrequencies and
describe the normal mode motions.

(d) Assuming the same equilibrium positions as in (c), describe how your answer changes if
m1 = 2m, m2 = m, κ1 = κ, and κ2 = 2κ. Then consider the case where m1 is initially displaced
10◦ clockwise from its equilibrium position while the other two masses are held fixed. The three
masses are then released from rest simultaneously. Find the resulting motion of each mass.

(e) Lastly, consider N identical masses connected by N identical springs (see figure (iii) below).
Determine the eigenfrequencies and describe the normal mode motions. Discuss how your
answer is different from and similar to the case of a loaded string discussed in Section 12.9.
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11. A simple pendulum of mass m and length b is suspended from a cart of mass M . The cart
moves horizontally along a frictionless rail. g is the gravitational acceleration. Assume small
oscillations.

(a) First, find the system’s Lagrangian and equations of motion (see figure (i) below). Determine
the eigenfrequencies and describe the corresponding normal mode motions.

(b) Then, consider a case where a massless spring of spring constant κ is attached between the
cart and an adjacent wall (see figure (ii) below). Determine the eigenfrequencies.

(c) Simplify the case in (b) by supposing M = m and that the values of m, κ, and b are such that
κb = 2mg. Find the eigenfrequencies and describe the corresponding normal mode motions.

(d) Finally, let us carry out a quick sanity check on your answer in (b). Drop all the assump-
tions made in (c), but instead assume m � M and κ

M < g
b (i.e., loose spring). Find the

eigenfrequencies and describe the corresponding normal mode motions. Explain their physical
meanings.

12. Starting from generalized coordinates qk defined at the beginning of Section 12.4 (with
k = 1, 2, ..., n), follow the texts in Sections 12.4 to 12.6 and review the general procedure to
solve a problem of coupled oscillations — most of which were discussed in the class, but some
left for your exercise. In particular, prove explicitly (i) that Eq.(12.37) can be derived from
Eq.(12.34), (ii) that the eigenvectors ar found in the process form an orthogonal set, and (iii)
that Eq.(12.64) can be derived directly from Eq.(12.63) and Lagrange’s equation of motion.
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