
Classical Mechanics I (Spring 2020): Final Exam Solution

Jun. 20, 2020

[total 25 pts, closed book/cellphone, no calculator, 90 minutes]

1. [4 pt] Consider a double pulley system shown below with massless inextensible strings and
two massless smooth pulleys. The masses of the three weights are indicated in the figure (m,
3m, 4m).

(a) [1 pt] Determine the Lagrangian and Lagrange’s equations of motion (without using unde-
termined multipliers). You will first need to define your choice of the generalized coordinates.

(b) [1 pt] Determine the downward acceleration of each of the three masses.

(c) [1 pt] Repeat (a) using the Lagrangian method with undetermined multipliers. Identify the
forces of constraint and explain their physical meanings.

(d) [1 pt] Repeat (a) using the Newtonian method.

• (a) x1: distance between the center of mass of the larger pulley (pulley 1) and 4m, x2: distance
between the center of mass of the smaller pulley (pulley 2) and 3m, then, 4mẍ1 +3m(ẍ1− ẍ2)+
m(ẍ1 + ẍ2) = 0 and −3m(ẍ1 − ẍ2) + m(ẍ1 + ẍ2) = 2mg (discussed in the class or in Example
7.8)

• (b) The downward accelerations of the masses 4m, 3m, m are 1
7g, 3

7g, −5
7g, respectively.

• (c) The Lagrange multipliers are related to the strings’ tensions, T1 = 24
7 mg, T2 = 12

7 mg.
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2. [4 pt] Show that the shortest path between two given points on the surface of a sphere is a
great circle – in three different ways below.

(a) [2 pt] By introducing a functional in the form of
∫
f1{θ, θ′} dφ in spherical coordinates

[r, θ, φ]. One may opt to use the formula
∫

acsc2θdθ√
1−a2csc2θ = sin−1

(
cotθ√

(1/a2)−1

)
+ constant (when

a < 1) to expedite the derivation.

(b) [1 pt] By using an alternative functional form of
∫
f2{θ, φ′} dθ.

(c) [1 pt] By rewriting the functional in the form of
∫
f3{y′, z′} dx in Cartesian coordinates

[x, y, z], and employing the method of Euler equations with an auxiliary condition imposed.

• (a) s = ρ
∫ 2
1

√
θ′2 + sin2θ dφ (discussed in the class or in Example 6.4)

• (b) s = ρ
∫ 2
1

√
1 + sin2θφ′2 dθ → sin2θφ′√

1+sin2θφ′2
= b → dφ

dθ = b csc2θ
(1−b2csc2θ)1/2 : same as Eq.(6.46)

• (c) s =
∫ 2
1

√
1 + y′2 + z′2 dx and g = x2 +y2 +z2−ρ2 = 0 → d

dx

(
y′√

1+y′2+z′2

)
−2λ(x)y = 0

and d
dx

(
z′√

1+y′2+z′2

)
− 2λ(x)z = 0 → Eliminating λ, (z − xz′)y′′ − (y − xy′)z′′ = 0.

3. [5 pt] Consider a homogenous disk of radius ρ and mass m, which rolls without slipping
inside the lower half of a fixed, hollow cylinder of inner radius R. As indicated in the figure
below, θ is the angle between the vertical and the line joining the centers of the disk and the
cylinder, and φ is the angle by which the disk rotated from the bottom of the cylinder.

(a) [2 pt] Find the period of small oscillations in the variable θ using the Lagrangian method
(without undetermined multipliers).

(b) [1 pt] Repeat (a) using the Lagrangian method with undetermined multipliers.

(c) [2 pt] Repeat (a) using the Hamiltonian method.

• (a) T = 1
2m(R − ρ)2θ̇2 + 1

4mρ
2
(
(R−ρ)θ̇

ρ

)2
because Rθ = ρ(θ + φ), and U = −mg(R −

ρ) cos θ → θ̈ + 2g
3(R−ρ) sin θ = 0

• (b) T = 1
2m(R− ρ)2θ̇2 + 1

4mρ
2φ̇2, U = −mg(R− ρ) cos θ, and g(θ, φ) = (R− ρ)θ − ρφ = 0
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• (c) From L in (a), pθ = ∂L
∂θ̇

= 3
2m(R − ρ)2θ̇ → H = pθθ̇ − L = p2θ

[
3m(R− ρ)2

]−1 −
mg(R− ρ) cos θ → θ̇ = ∂H

∂pθ
= 2pθ

[
3m(R− ρ)2

]−1
and ṗθ = −∂H

∂θ = −mg(R− ρ) sin θ →
combined, ṗθ =

[
3
2m(R− ρ)2

]
θ̈ = −mg(R− ρ) sin θ → θ̈ + 2g

3(R−ρ) sin θ = 0

4. [3 pt] Throughout the semester we discussed many examples in which concepts in classical
mechanics are utilized in contemporary research and in explaining daily phenomena.

(a) [2 pt] We discussed how invisible objects in the Universe were discovered by modeling a two-
body system interacting via the central force. Describe three or more such cases. 2-3 sentences
per case are expected to clearly explain how people came to notice the existence (and mass) of
the invisible object using the concept of two-body motion, central force, and/or reduced mass.
Use diagrams if desired.

(b) [1 pt] In the last class of the semester, five of your peers presented their term projects.
Describe the key idea of one of the presentations you found interesting. A paragraph of at least
2-3 sentences is expected to clearly convey the core physics idea of his/her term project. If you
were one of the presenters, please choose someone else’s.

• (a) Exoplanet systems, Pluto+Charon system, Sirius A+B system, Cygnus X-1 system, su-
permassive black hole and nearby stars. For more information about each of the items above,
see the class slides, Lectures 3-1 and 15-1.

• (b) See the student presentation slides for Lecture 16-1 that include the collection of term
project presentations by five students on June 16.

5. [4 pt] Consider a particle of mass µ moving under the influence of an attractive central force
of the form F (r) = − k

r2
exp

(
− r
a

)
where r is the distance from the origin of the central force,

and k and a are positive constants.

(a) [2 pt] By using the concept of an effective potential, find the condition for radius r0 at which
the particle with angular momentum ` moves in a circular orbit.

(b) [2 pt] Then, again using the concept of the effective potential, show that, if r0 < a, a slight
radial nudge to this circular orbit causes only small radial oscillations. Find the period for these
oscillations.

• (a) ∂V (r)
∂r

∣∣∣
r0

= 0 with V (r) = − ka
r2

exp
(
− r
a

)
+ `2

2µr2
→ k

r20
exp

(
− r0

a

)
= `2

µr30
.

• (b) For the stability analysis, we use Eq.(8.76) or (8.93): ∂2V (r)
∂r2

∣∣∣
r0

= `2

µr40

(
1− r0

a

)
> 0 for the

orbit to be stable. ωosc =

√
[ ∂2V (r)/∂r2 ]r0

µ = `
µr20

√
1− r0

a which is valid if r0 < a.
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6. [5 pt] A particle of mass m is constrained to move on the inside surface of a smooth cone of
half-angle α (see the figure below). The particle is subject to the gravitational field g.

(a) [2 pt] Determine the Lagrangian and Lagrange’s equations of motion for the coordinates r
and θ in the usual cylindrical coordinate system, as shown in the figure.

(b) [1 pt] Let ` be the angular momentum about the z-axis. Find the effective potential V (r).
Show that the turning points of the motion in r can be found by solving a cubic equation in r.
(Note: You don’t need to find the roots of this cubic equation.)

(c) [2 pt] Find the condition under which the particle with given ` makes circular motion at
r = r0 = constant. Is this motion stable? If so, what is the period of small oscillations (in the
variable r) about this circular motion?

• (a) mr2θ̇ = `, and r̈ − rθ̇2 sin2α+ g sinα cosα = 0 (discussed in the class or in Example 7.4)

• (b) The turning points can be found by solving V (r) = `2

2mr2
+mgr cotα = E.

• (c) With r0θ̇
2 sin2α = `2

m2r30
sin2α = g sinα cosα and using an approximation similar to what

we did in Eq.(8.86) or (8.99) → for the small perturbation r → r0 +x, the equation of motion

found in (a) becomes ẍ + 3`2sin2α
m2r40

x = 0 → therefore, ωosc =
√
3` sinα
mr20

(discussed in the class

or in Example 8.7)
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