
Classical Mechanics I (Spring 2020): Midterm Exam Solution

May 2, 2020

[total 15 pts, closed book/cellphone, no calculator, 90 minutes]

1. [3 pt] Consider a simple harmonic oscillator of mass m oscillating on a spring with spring
constant k. The amplitude of oscillation is A. Then, at the moment the mass is at position
x = A

2 moving to the right, it collides and sticks to another mass m (we call this moment t = 0;
x is the displacement from the equilibrium point of the old oscillation).

(a) [2 pt] From momentum conservation, the speed of the resulting mass 2m right after the
collision is half the speed of the moving mass m right before the collision. Describe the new
oscillation in terms of the displacement x(t) for t > 0. In particular, what is the amplitude of
the new oscillation?

(b) [1 pt] Verify the amplitude of the new oscillation from (a) using energy conservation.

• (a) Let vold be the velocity of m right before the collision. From energy conservation 1
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• (b) The amplitude A′ =
√
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2. [3 pt] Consider the system of a pulley and two masses illustrated below. A massless string of
length b is attached to a block of mass m1, runs over a massless, frictionless pulley, then attached
to a metal ball of mass m2. The ball, with a hole through it, is threaded on a frictionless vertical
rod. The rod and the pulley are separated by d. Assume that the sizes of the pulley and the
ball are negligible.

(a) [1 pt] Using the variable θ shown below, find the potential energy of the system, U(θ).

(b) [1 pt] Find the equilibrium point(s). What condition should m1 and m2 meet for the
equilibrium to occur?

(c) [1 pt] If equilibrium points do exist, determine their stabilities.

• (a) U(θ) = m1gd/sin θ −m2gd/tan θ + C

• (b) For θ0 = cos−1 (m2/m1) to be realistic, m1 > m2.

• (c) [d2U/dθ2]θ=θ0 =
[
(m1sin

2θ − 2 cos θ(m2 −m1cos θ)) · gd
sin3θ

]
θ=θ0

= m1gd
sin θ0

> 0

3. [2 pt] In the class we covered several special topics including tidal force, dark matter, and
(super)massive black holes.

(a) [1 pt] We discussed several evidences that suggest the existence of invisible entities such as
dark matter and (super)massive black holes. Describe one (or more) of them per each of the
entities below. 2-3 sentences per evidence are expected to clearly explain how each evidence
points to the existence of the invisible entity. Use diagrams if desired.

• Evidence for the existence of dark matter
• Evidence for the existence of (super)massive black holes

(b) [1 pt] We also discussed how the tidal force manifests itself in various settings. Describe
one (or more) exemplary phenomenon per each of the categories below. 2-3 sentences per
phenomenon are expected to clearly explain how the concept of tidal force is used. Use diagrams
if desired.

• Tidal interaction on satellite moons
• Tidal interaction on galaxies
• Tidal interaction on objects approaching very closely to a massive body.
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• (a-1) Flat galactic rotation curve, fast random motion of member galaxies in galaxy clusters,
gravitational lensing, dissociation of the gravitational potential and baryons during collisions of
galaxy clusters (e.g., “bullet cluster”), cosmological structure formation.

• (a-2) Fast motion of stars near the center of Milky Way galaxy, gravitational redshift mea-
surement near the center of Milky Way galaxy, direct imaging of the shadow of a massive black
hole at the center of M87 galaxy. For more information about each of the items above, see the
class slides, Lectures 3-1 and 8-2.

• (b-1) Tidal interaction on satellite moons: ocean tides, spring and neap tides, tidal locking
of the Earth+Moon system, tidal locking of the Pluto+Charon system, slowdown of Earth’s
rotation, tidal locking of the Jupiter+Io system, tidal heating on Io and Europa by Jupiter,
tidal heating on Enceladus by Saturn

• (b-2) Tidal interaction on galaxies: tidal stripping or harassment of satellite galaxies, tidal
tails or bridges during galaxy collision

• (b-3) Tidal interaction on objects approaching very closely to a massive body: tidal disinte-
gration of Comet Shoemaker-Levy when approaching Jupiter, tidal disruption of a star or a gas
cloud when approaching a black hole, spaghettification of an object approaching a black hole.
For more information about each of the items above, see the class slide, Lecture 9-1.

4. [2 pt] Consider a thin, uniform spherical shell of mass M and radius a with a very small
opening. A small bead of mass m and negligible size is released from a distance a in front of
the opening. Calculate the speed with which the bead hits the point C on the shell, opposite
to the opening. In solving this problem, you are asked to directly compute the gravitational
field vector g(r) inside and outside the shell as a function of distance r from the center of the
shell, O (that is, not by using the gravitational potential or by utilizing Poisson’s equation). êr
is the unit vector along r pointing away from O. Consider only gravitational force, and assume
no other gravitational source.

• Starting from Eq.(5.46) with a2 = x2 + r2 − 2xr cosα,

|g(r)| = G

∫
V

ρ(r′)dv′

|r− r′|2
cosα = 2πρsG

∫ π

0

a2sinθ cosαdθ

x2
=
πρsaG

r2

∫ r+a

|r−a|

x2 + r2 − a2

x2
dx

→ g(r > a) = −πρsaG
r2

(4a) êr = −GM
r2

êr , and g(r < a) = −πρsaG
r2

(0) êr = 0
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• Thus, the bead keeps its kinetic energy when it passes the opening, 1
2mv

2 = −GMm
2a + GMm

a ,
until it hits the point C.

5. [3 pt] Consider a thin rod (line mass) of uniform line density λ. Consider only gravitational
force, and assume no other gravitational source.

(a) [1 pt] If the rod is infinitely long, find the gravitational field vector g(r) at distance r from
the rod in a direction perpendicular to the rod by using the integral form of Poisson’s equation.
êr is the unit vector along r pointing away from the rod.

(b) [2 pt] If the rod has a finite length of 2`, determine the gravitational field vector g(r) at
distance r from the rod’s midpoint O in a direction perpendicular to the rod. Show that your
answer becomes that of (a) when ` approaches ∞. One may use the following formula from an
integral table:

∫
dx√
x2+a2

= ln(x+
√
x2 + a2).

• (a) From Eq.(5.35), one gets

∫
S
n · gda = −4πG

∫
V
ρ(r′)dv′ → 2πrL êr · g(r) = −4πGλL → g(r) = −2Gλ

r
êr

• (b-1) From Eq.(5.7), one gets

Φ(r) = −G
∫ +`

−`

λ dz√
z2 + r2

= −Gλ ln

(√
`2 + r2 + `√
`2 + r2 − `

)

→ g(r) = −∂Φ

∂r
= Gλ

[
r/
√
`2 + r2√

`2 + r2 + `
− r/

√
`2 + r2√

`2 + r2 − `

]
= − 2Gλ

r
√

1 + ( rl )
2
−−−−−→
`→∞

−2Gλ

r

• (b-2) Or, when ` approaches ∞,
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6. [2 pt] Consider a damped driven plane pendulum described by φ̈+2βφ̇+ω2
0 sinφ = γω2

0 cosωt,
where φ is the angular displacement in radian at time t, ω is the driving frequency, ω0 = 1.5ω is
the natural frequency of the pendulum, and β = 3ω/8 is the damping constant. For simplicity,
we choose the driving frequency to be ω = 2π so that the drive cycle τ becomes 1. Now
let us consider two identical pendulums that satisfy the exact same equation of motion, but
have slightly different initial conditions. We denote the separation of these two pendulums as
∆φ(t) = φ2(t) − φ1(t). For γ = 1.105, |∆φ(t)| starts out at 10−4 but reaches π by t = 16, as
seen in the figure below.
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(a) [1 pt] Why can t = 16 be considered an important milestone? Use this observation to
estimate the Lyapunov exponent λ, as defined in ∆φ(t) ∼ |∆φ(0)|eλt. Then, suppose that
you want to predict the pendulum’s φ(t) with an accuracy of 10−2 and that you know the
initial value φ(0) within 10−6. Estimate the maximum time Tmax for which you can predict φ(t)
within the required accuracy. (Note: Here “∼” signifies that ∆φ(t) on average oscillates roughly
underneath the envelope |∆φ(0)|eλt. Obtain your answers accurate to only two significant
figures. Use the following if necessary: log(π) = log10(π) ≈ 0.50, log(e) = log10(e) ≈ 0.43.)

(b) [0.5 pt] How would your answer Tmax change in (a) if you improved the accuracy of your
measurement of the initial value to 10−8 (a hundred-fold improvement with a vast investment of
money and resources)? Use this example to explain the difficulty in making accurate long-term
predictions for chaotic systems.

(c) [0.5 pt] Compare qualitatively the two cases, γ = 1.105 (figure above) and γ = 0.1 (figure
below), focusing on the evolution of |∆φ(t)|. Include and circle the following keywords in
your answer: exponential decay and/or growth, sensitivity to initial conditions, linear, chaotic.
(Note: You don’t need to solve differential equations here; qualitative justifications are more
than enough.)

• (a) An uncertainty of ±π radian in φ means that we have absolutely no way of predicting where
the pendulum is. log|∆φ(t)| ≈ log|∆φ(0)|+λt·log (e) → log(π) ≈ log(10−4)+16λ·log (e) →
Thus, 0.50 ≈ −4+6.9λ gives λ ≈ 0.65, confirming λ > 0 for chaotic behavior. Then, log(10−2) ≈
log(10−6) + 0.65Tmax · log (e) → Tmax ≈ 14.

• (b) log(10−2) ≈ log(10−8) + 0.65Tmax · log (e) → Tmax ≈ 21, only ∼ 50% increase in Tmax

with a hundred-fold improvement in accuracy of the initial value measurement.

• (c) In the case of γ = 0.1, on average |∆φ(t)| decays exponentially demonstrating that the
motion becomes insensitive to its initial condition (“linear” behavior). In contrast, in the case
of γ = 1.105, on average |∆φ(t)| grows exponentially demonstrating that the motion becomes
very sensitive to its initial condition (“chaotic” behavior).
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