

CURRENT STATUS AND FUTURE PROSPECTS OF BRIGHT X-RAY SOURCES

KWANG-JE KIM

University of Chicago Argonne National Lab

November 21, 2018 Physics Department, Seoul National University

RELATIVISTIC ELECTRONS AND SYNCHROTRON RADIATION

- If an electron with velocity $v \to c$, $\gamma = \frac{1}{\sqrt{1 (v/c)^2}} \to \infty$ makes a curved motion under magnetic field, short wavelength radiation is radiated: $\lambda \sim \rho / \gamma^3$
- # of photons in $\frac{1}{\nu}$ angle $\sim \alpha \simeq 1/137$

RADIATION (PHOTON) IS USEFUL (BRIGHT) IF THE TRANSVERSE EXTENT IS SMALL & DIRECTIONAL

- $\Delta x \cdot \Delta \phi$ = phase space area = $\Delta x \cdot \Delta p_x / m\gamma$: Phase space area
- Liouville's theorem in Hamiltonian mechanics: Phase space area is conserved
- Beam physics terminology: $\Delta x \cdot \Delta \theta$ = "emittance" = ε_x
- Brightness= # of photons/ $\varepsilon_x \varepsilon_y$. Real figure of merit since it is conserved

X-RAY BEAM PHASE SPACE IS A CONVOLUTION OF THE RADIATION AND E-BEAM PARTS Advance of X-ray beam brightness follows the advance of the electron storage ring performance

PRODUCING DIRECTED RADIATION (I) UNDULATORS: EM→PM→SC

SCU18-1 in Sector 1 of the APS ring.

PRODUCING DIRECTED RADIATION (II): REDUCING THE ELECTRON BEAM EMITTANCE

- E-beam emittance is determined from the balance of two effects: damping from the classical nature and diffusion due to the quantum nature (discrete photon effect) of the synchrotron radiation in bending magnets
- \rightarrow Use a short achromatic bending units

 $(N_{\rm D} = \# \text{ of dipoles/sector})$

- 3rd generation source: N_D = 2,3
- "Diffraction limited storage ring (DLSR)" sources for X-rays: N_D = 7
- Many DLSR projects, new or retrofitting 3rd gen facilities around the world

INTERNATIONAL HIGH ENERGY "DIFFRACTION LIMITED (DL) SR DEVELOPMENT

TEMPORAL COHERENCE

• Monochromater improves temporal coherence : $\Delta \omega \rightarrow \Delta \omega_M \leq \Delta \omega_M$

 If e-beam bunch length >> wavelength → the intensity of wave-trains adds incoherently ~N_e

• The amplitudes add in phase if $\Delta z_{el} << \lambda_1$ or if electrons are concentrated at positions $z = n\lambda_1$, n=1,2,.. Intensity $\sim N_e^2$

This happens in free-electron laser

FREE ELECTRON LASER IS A LASER

- For every spontaneous process, there exists stimulated emission
- In the presence of *n* coherent modes, the emission probability $\propto n + 1$ while absorption probability $\propto n \rightarrow$ light amplification
 - J. Weber (1951), Maiman, Townes, Shawlow, Basov, Porkhorov,...
- Free electron laser—the emission process involves "free electrons" in an undulator magnetic field rather than bound electrons in atoms or molecules
 John Madey (1971)
- In the limit of low photon energy, drops $out \rightarrow classical$ interpretation

Classical View of a Free Electron laser

 When the EM wavelength satisfies the undulator condition, an electron sees the same EM field in the successive period → sustained energy exchange

- An e⁻ arriving at A₀ loses energy to the field (ev E < 0). Similarly the e⁻ at distance $n\lambda_1$, n=1,2,... also loses energy. However, those at $\lambda_1(1/2 + n)$ away gain energy.
- The electron beam develops energy modulation (period length λ_1).

 \sim

- Higher energy electrons are faster \rightarrow density modulation develops $\frac{1}{1}$
- Coherent EM of wavelength λ_1 is generated \rightarrow "Free electron laser"

- X-rays are difficult to reflect → Low-gain oscillators are difficult
 - Make a single pass, high-gain (~10⁶) device for self-amplified spontaneous emission (SASE) for intense, quasi-coherent X-rays
 - The required e-beam can be produced from an RF photo-cathode gun, compression, and acceleration
- Use Bragg reflector (diamond) → XFELO producing fully coherent X-rays

X-ray FEL solution I :Initial noise is amplified to intense, quasi-coherent radiation (SASE)

Hard X-Ray FELs Operating in 2017

X-RAY FEL SOLUTION II: FEL OSCILLATOR BY USING BRAGG REFLECTORS

- First proposed by R. Collela and A. Luccio (1983)
- Revived by KJK, Y. Shvyd'ko, S. Reiche (2008) spurred by the ERL development
- Will provide ultra-narrow BW (a few meV) and full coherence
- Real X-ray laser!!

A SHORT LESSON IN KOREAN AND CHINESE

■Je (제, 齊)– ordered, coherent ■Kwang (광, 光)--light ■Kwang-Je → *Coherent Radiation*

According to Yuan T. Lee

SCIENCES WITH XFELO

Enhanced application of techniques developed at 3GSR sources

- IXS, XPCS, NRS \rightarrow higher resolution, smaller volume,.
- Deep-earth core material, strongly correlated system,...

Techniques in infancy at current sources

- Coherent control with X-rays, X-ray NLO,...
- Practical applications of NRS, such as study of red cells without enriching the excited states of Fe

Emergence of new areas

- Nuclear quantum optics, entangled state
- X-ray spectral comb→ 10 orders of magnitude improvement in precision atomic spectroscopy (QED test), quantum optics of nuclear states

Nuclear-resonance-stabilized XFELO(B.W. Adams and K.-J. Kim, 2015, PRSTAB)

- The XFEL-O output pulses are copies of the same circulating intra-cavity pulse → By stabilizing cavity length to a fraction of λ, the spectrum of XFELO output becomes a comb
- The extreme-stabilized XFEL-O will
 - establish an x-ray-based length standard
 - Revolutionize the quantum optics of nuclear states
 - have applications in fundamental physics such as x-ray Ramsey inter

TEST FOR DIAMOND ENDURANCE @ X-RAY POWER DENSITY 10-20 KW/MM² Τ.

KOLODZIEJ, ET AL (JSR 2018)

[mm]

 $x \,[\mathrm{mm}]$

- Steel will melt in < mili-seconds</p>
- Irradiation up to 4 hours at APS
 - 9 kW/mm² in 30x120 μ m² spots (K-B mirror focusing) under medium vacuum
 - 12.5 kW/mm² in 30x40 μm² spots (Be-CRL focusing) under UHV (~10⁻⁸)

 $x \,[\mathrm{mm}]$

 $x \,[\mathrm{mm}]$

18

XFELO TEST EXPERIMENT AT LTU, LCLS BEING PLANED FOR 2019-21

- Use four LCLS undulator units (4x3.4 m)
- Begin with the 120 Hz LCLS linac, but produce a pair of bunches separated by the X-ray cavity round trip time
- The first bunch produce X-ray pulse, and the second pulse amplify
- When the LCLS II SCRF linac available, attempt a steady state operation

AVERAGE BRIGHTNESS OF VARIOUS SOURCES

SUMMARY

- We have reviewed the development of high-brightness X-ray generation techniques:
- Storage ring-based:
 - 2nd and 3rd generation SR sources
 - DLSR in near future
- Linac-based high-gain FELs producing quasi-coherent, femto-second SASE pulses
 - Mostly low rep rate XFELs using pulsed linac in the past and current
 - High rep rate, even CW MHz, current and future
 - Femto-/ atto- second dynamics
- X-ray FEL oscillator producing fully coherent X-rays in the future
 - Ultra-narrow BW applications

BACK UP SLIDES

Radiation by one electron in N_u period undulator

 The e⁻ emits EM wave in the forward direction due to its x-acceleration. Consider the wave fronts from successive undulator periods:

• The e⁻ is slower since (1) c > v $c(1-1/2\gamma^2)$, and (2) its trajectory is curved. Thus, the EM wave slips ahead of the e⁻ in one undulator period by a distance λ_1 =wavelength:

 $\lambda_1 = \lambda_u (1 + K^2/2)/2\gamma^2$, $\varepsilon_1 [\text{keV}] = 12.4/\lambda_1 [\text{\AA}]$

• $N_{\rm u}$ periods of the undulator $\rightarrow N_{\rm u}$ cycle wave-train

MINIMUM RADIATION EMITTANCE

$$\mathcal{E}_{\omega}(\phi; z) = \frac{1}{\lambda^2} \int dx \ e^{-ik\phi \cdot x} E_{\omega}(x; z)$$
$$E_{\omega}(x; z) = \int d\phi \ e^{ik\phi \cdot x} \mathcal{E}_{\omega}(\phi; z).$$

$$E(x;0) = E_0 \exp\left(-\frac{x^2}{4\sigma_r^2}\right) \qquad \mathcal{E}(\phi;0) = \mathcal{E}_0 \exp\left(-\frac{\phi^2}{4\sigma_{r'}^2}\right)$$

$$\sigma_r^2(z) = \left\langle x^2 \right\rangle = \frac{\int dx \ x^2 \left| E_{\omega}(x;z) \right|^2}{\int dx \ \left| E_{\omega}(x;z) \right|^2} \qquad \sigma_{r'}^2(z) = \left\langle \phi^2 \right\rangle = \frac{\int d\phi \ \phi^2 \left| \mathcal{E}_{\omega}(\phi;z) \right|^2}{\int d\phi \ \left| \mathcal{E}_{\omega}(\phi;z) \right|^2}$$

Minimum emittance Radiation emittance for Gaussian amplitude profile

$$\sigma_r \sigma_{r'} = \frac{\lambda}{4\pi} \equiv \varepsilon_r.$$

