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RELATIVISTIC ELECTRONS AND
SYNCHROTRON RADIATION

= |f an electron with velocity v — ¢, y =

— 00

1-(v/c)?
makes a curved motion under magnetic field, short
wavelength radiation is radiated: A~p/y3

= # of photons in % angle ~a ~ 1/137

—~
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RADIATION (PHOTON) IS USEFUL (BRIGHT) IF
THE TRANSVERSE EXTENT IS SMALL &
DIRECTIONAL

» Ax - A¢p= phase space area =Ax - Ap,,/my : Phase space area

= Liouville’s theorem in Hamiltonian mechanics: Phase space area is conserved
» Beam physics terminology: Ax - A6 = “emittance” =¢,

= Brightness= # of photons/¢,¢,. Real figure of merit since it is conserved
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X-RAY BEAM PHASE SPACE IS A CONVOLUTION
OF THE RADIATION AND E-BEAM PARTS

Advance of X-ray beam brightness follows the advance of
the electron storage ring performance

J f }’K

1% X

= -

3
|
~

\

|
I
13
R

‘ - | | .4
't Future Light Sources XFEL-O . B

)
10 . FEL- ; e‘ﬂrQDJM :
; | sl XFEL-SASE & XFEL-0 - U/Nl RAJ ‘, g J
—/ ERLs 1 ¢
o s AN aflf-
~ Undulators Joo @
18 E E
10° | §’

Average Brightness (photons / sec / mm? / mrad® / 0.1% bandpass)
=)
T T T 1T 71

1l i L 3rd generation
10 Bending Magnets BT -
10%— §
- v+ i
w0 ; 15 [ 2nd generationy |
L =
0 i
- e [ e
= ~ @10 - | Density
10’ (= Y g :
= -I sn-wu.gmulb g’
10— I
| Candie g5 LI A (A ‘ |

4 Argonne &



PRODUCING DIRECTED RADIATION (1)
UNDULATORS: EM->PM->SC

Magnetic undulator
(N periods)

Relativistic

Flux concentrating

Permanent steel (Fe) pole pieces

magnets
(SmCoy)

> i

SCU1-1 in Sector 1 of the APS ring.
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PRODUCING DIRECTED RADIATION (ll): REDUCING THE

ELECTRON BEAM EMITTANCE

» E-beam emittance is determined from the balance of two effects: damping from
the classical nature and diffusion due to the quantum nature ( discrete photon

effect) of the synchrotron radiation in bending
= Use a short achromatic bending units

= 314 generation source: Ny = 2,3

magnets

(Np = # of dipoles/sector)

= “Diffraction limited storage ring (DLSR)” sources for X-rays: N, =7

= Many DLSR projects, new or retrofitting 3@ gen facilities around the world
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INTERNATIONAL HIGH ENERGY “DIFFRACTION

LIMITED (DL) SR DEVELOPMENT

MAX-IV (Sweden)
Inauguration June 2016;
in operation

HEPS (China)
Greenfield accelerator
facility to be built near
Beijing; planned
completion ~2025

2022

ESRF (France)

second phase of upgrade
incorporates MBA lattice;
plans to resume
operation in 2020,
complete 4 state-of-the-
art beamlines by 2022

A

41T

Diffraction limited
transverse
emitance

“25  SPring-8
(Japan)
2023 Upgrading
in 2027
timeframe

Resume
operation
in 2023
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TEMPORAL COHERENCE

= Monochromater improves temporal coherence .Aw 2 Aaj, << 4w

/\/\/\/\/\/\)M"\/‘\/\/\/\/\/\/\/\/\J

» |[f e-beam bunch length >> wavelength =>the intensity of wave-trains adds
incoherently ~N,

Al Periodic & coherent———
VA VYVAVYVAVAVAVAVYVAVYANAND |

TSCREREAREAREAREAREAREAREARIA

= The amplitudes add in phase if 4z, << A, or if electrons are concentrated at
positions z =nA;, n=1,2,.. Intensity~N,_2

A A AN

» This happens in free-electron laser
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FREE ELECTRON LASER IS A LASER

r\/\/}i'/*-'ﬁ> o >
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= For every spontaneous process, there exists stimulated emission

» |n the presence of n coherent modes, the emission probability « n + 1 while
absorption probability «« n = light amplification
— J. Weber (1951), Maiman, Townes, Shawlow, Basov, Porkhorov,..

= Free electron laser—the emission process involves “free electrons” in an
undulator magnetic field rather than bound electrons in atoms or molecules
— John Madey (1971)

= In the limit of low photon energy, drops out-> classical interpretation
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Classical View of a Free Electron laser

When the EM wavelength satisfies the undulator condition, an electron
sees the same EM field in the successive period-> sustained energy
exchange

MM (N 1 X
I |+o/\*\-1ﬁ’\% — ~—

An e- arriving at A, loses energy to the field (ev E <0). Similarly the e-
at distance nl,, n=1,2,... also loses energy. However, those at A,(1/2 +n)
away gain energy.

The electron beam develops energy modulation (period length A)).

WATAVAVAVAY

Higher energy electrons are faster - density modulation develops

MWW

Coherent EM of wavelength A, is generated-> “Free electron laser”
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CHALLENGES FOR X-RAY FELS

Electron Bunch
Linac / Dump
BB AR

RS 48
DR Lo

Undulator

1111113

Optical Pulse T

Optical Cavity Mirrors

= X-rays are difficult to reflect-> Low-gain oscillators are difficult
— Make a single pass, high-gain (~10°) device for self-amplified spontaneous
emission (SASE) for intense, quasi-coherent X-rays
— The required e-beam can be produced from an RF photo-cathode gun,
compression, and acceleration

» Use Bragg reflector (diamond)—-> XFELO producing fully coherent X-rays
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X-ray FEL solution | :Initial noise is amplified to

intense, quasi-coherent radiation (SASE)
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Hard X-Ray FELs Operating in 2017

LCLS-1, 11 2009, 2018 o
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X-RAY FEL SOLUTION II: FEL OSCILLATOR BY USING

BRAGG REFLECTORS

Nipass = 600,1000
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X-ray Pulse
.

Tunable X-ray
Optical Cavity

= First proposed by R. Collela and A. Luccio (1983)

» Revived by KJK, Y. Shvyd’ko, S. Reiche (2008) spurred by the ERL

development

= Will provide ultra-narrow BW ( a few meV) and full coherence

* Real X-ray laser!!
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A SHORT LESSON IN KOREAN AND CHINESE

=Je (A, ’TYT‘)— ordered, coherent
=Kwang (&, 7t)--light
"Kwang-Je - Coherent Radiation

According to Yuan T. Lee
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SCIENCES WITH XFELO

= Enhanced application of techniques developed at 3GSR sources
— IXS, XPCS, NRS-> higher resolution, smaller volume,,.
— Deep-earth core material, strongly correlated system,..

» Techniques in infancy at current sources
— Coherent control with X-rays, X-ray NLO,..
— Practical applications of NRS, such as study of red cells without enriching the
excited states of Fe

= Emergence of new areas
— Nuclear quantum optics, entangled state
— X-ray spectral comb—> 10 orders of magnitude improvement in precision
atomic spectroscopy (QED test), quantum optics of nuclear states

16 Argonne &



Nuclear-resonance-stabilized XFELOpB.w.
Adams and K.-J. Kim, 2015, PRSTAB)

The XFEL-O output pulses are copies of the same circulating
intra-cavity pulse - By stabilizing cavity length to a fraction of
A, the spectrum of XFELO output becomes a comb

The extreme-stabilized XFEL-O will
— establish an x-ray-based length standard

— Revolutionize the quantum optics of nuclear states
— have applications in fundamental physics such as x-ray Ramsey
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detectors

14.4 keV emission
~40m 6.4..7.1 keV Fe K fluorescence
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TEST FOR DIAMOND ENDURANCE @ X-RAY
POWER DENSITY 10-20 KW/MM? T.

KOLODZIEJ, ET AL (JSR 2018)

= Steel will melt in < mili-seconds

= [rradiation up to 4 hours at APS
— 9 kW/mm? in 30x120 um? spots ( K-B
mirror focusing) under medium
vacuum
— 12.5 kW/mm? in 30x40 um?2 spots (Be-
CRL focusing) under UHV (~10-%)

e e

A: 4 hrs, 2e-8 Torr B:4 hrs,4e-6Torr D -1 hr, E - 0.5 ht = 1021
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XFELO TEST EXPERIMENT AT LTU, LCLS BEING
PLANED FOR 2019-21

0.2-5 keV (<1 MHz)

) LCLS-I Linac
LCLS-II-HE Linac ) 315 GeV 0.1-16 keV (120 Hz)

1-25+ keV (120 Hz)
1-13 keV (<1 MHz)

* Use four LCLS undulator units (4x3.4 m)

« Begin with the 120 Hz LCLS linac, but produce a pair of bunches
separated by the X-ray cavity round trip time

» The first bunch produce X-ray pulse, and the second pulse amplify

 When the LCLS Il SCRF linac available, attempt a steady state
operation Argonne S19



AVERAGE BRIGHTNESS OF VARIOUS SOURCES
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SUMMARY

= We have reviewed the development of high-brightness X-ray generation
techniques:

= Storage ring-based:
— 2"d and 3" generation SR sources
— DLSR in near future

» Linac-based high-gain FELs producing quasi-coherent, femto-second
SASE pulses
— Mostly low rep rate XFELs using pulsed linac in the past and current
— High rep rate, even CW MHz, current and future
— Femto-/ atto- second dynamics

» X-ray FEL oscillator producing fully coherent X-rays in the future
— Ultra-narrow BW applications
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BACK UP SLIDES
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S
Radiation by one electron in N, period undulator

= The e- emits EM wave in the forward direction due to its x-acceleration. Consider
the wave fronts from successive undulator periods:
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E-field direction /]1 7Nu/]1

= The e-is slower since (1) c >v  ¢(1-1/2)#), and (2) its trajectory is curved. Thus,
the EM wave slips ahead of the e- in one undulator period by a distance
A=wavelength:

A=A (1+KZ2)12)2 | g[keV]=12.4/A[A]
= N, periods of the undulator - N, cycle wave-train
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MINIMUM RADIATION -
EMITTANCE o M »

T
E,(xz;2) = /dqb e *PBE (e z). "ﬁ w ;

i O

x p~
E(z:0) = Ey oxp(—4 ) E(P;0) =& (‘\p( 152 )

2
O',,. Pt

nY

Jdz &2 |E, (i#; 2)|? o2, (2) = <¢2> _ Jdp ¢* |Eu(: 3’)|2

Den 2\
Sy PPAT e e 16T

Minimum emittance Radiation emittance for
Gaussian amplitude profile
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