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들어가기	

•  물리학 =	자연에 대한 수학적 이해		
	 	 							(반복 측정이 가능한 양들 사이의 정량적 관계성)	

	 	 	NAàO(1)	:								단순화		(환원,대칭,통일)	

•  통일=	서로 다른 것을 동일시 하는것		
			 	 				 	전기//자기 à 전자기학	
	 	 	 	시간//공간	à	특수상대론	
	 	 									시공//중력 à 일반상대론		
	 	 	 	입자//파동 à 양자역학	
	 	 	 													

•  오늘의 주제 :	양자물질 +	시공간의 통일		

	양자임계점//	블랙홀 à		강상관계의 새로운 이론	
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양자물질의 정의 	

•  양자물질	=	전자계의 양자 요동/얽힘이 큰 물질	

	
	

							 	 	 	 	(그림:		요동과 얽힘 )	
•  요동:	한 상태가 여러상태의 중첩일때 	
•  얽힘:	두입자 이상의 상태가 각개 입자상태의 곱의 중첩일때.	
				
•  상호작용이  크면 양자요동과 얽힘이 크다.		 		
									양자물질	=	강상호작용계=강상관 계 	
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물질이 강상관계가 되는 세가지 방법  	

4	

•  상호작용의 세기	=	퍼텐셜에너지/운동에너지 	

	
	

•  유전상수가 작은계 à	Class	I	
	 	 	예)	그래핀,	토폴로지물질,	Dirac	materials		

•  느린 전자계 à	Class	II		
	 	 	예)	전이금속 산화물	(고온 초전도체),			
	 	 	 	Heavy	Fermion,		전통적 강상물질 

•  원천 커플링이 센 계 à Class	0		
	 	 	예)	핵물질	(not	Today)		
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Class	I)	작은 유전상수	=	작은 페르미면을 가진계 	
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Class	I		=		유전상수가 작다 ß		Small	FS				

	 	 	예)	Dirac	materials,		
	 	 	 	Graphene,	Weyl	SM,	Surface	of	TI	….		
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Class	II)		느린 전자를 가진 물질들	

6	

Transition metal oxides

25

• Atomic quantum numbers: (n, l, m, ms)
• Partially filled d-shell: strongly correlated, multi-orbital
• O2-: anion 
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V3+: V2O3, d2

V4+: VO2, d1
전이금속 산화물 	
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Class	II)		느린 전자를 가진 물질들:	flat	band	
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전이금속		3d	1-10	4s1-2	
전이금속 산화물	3d	1-10	
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Brittle	!		



		

•  어떤 흥미로운 일이 생기는가?		
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양자물질의 현상 : (i) Mott	insulator	

9	18.10.10@SNU.colloquium	

•  예상밖의 부도체성		(Mott	1935)	
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양자물질의 현상:  Phenomena of strong Interaction (ii) 

Violation of Wiedemann-Franz law      

4
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FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. (2) are undeter-
mined for any given sample: lm and H. For simplic-
ity, we assume we are well within the DF limit where
lm and H are approximately independent of n. We fit
Eqn. (2) to the experimentally measured L(n) for all
temperatures and densities in the Dirac fluid regime to
obtain lm and H for each sample. Fig 3C shows three
representative fits to Eqn. (2) taken at 60 K. lm is esti-
mated to be 1.5, 0.6, and 0.034 µm for samples S1, S2,
and S3, respectively. For the system to be well described
by hydrodynamics, lm should be long compared to the
electron-electron scattering length of ⇠0.1 µm expected
for the Dirac fluid at 60 K [18]. This is consistent with
the pronounced signatures of hydrodynamics in S1 and
S2, but not in S3, where only a glimpse of the DF appears
in this more disordered sample. Our analysis also allows
us to estimate the thermodynamic quantity H(T ) for the
DF. The Fig. 3C inset shows the fitted enthalpy density
as a function of temperature compared to that expected
in clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H

varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
is necessary [40, 41]. The enthalpy densities reported
here are larger than the theoretical estimation obtained
for disorder free graphene, consistent with the picture
that chemical potential fluctuations prevent the sample
from reaching the Dirac point. While we find thermal
conductivity well described by Ref. [5, 6], electrical con-
ductivity increases slower than expected away from the
CNP, a result consistent with hydrodynamic transport in
a viscous fluid with charge puddles [41].

In a hydrodynamic system, the ratio of shear viscos-
ity ⌘ to entropy density s is an indicator of the strength
of the interactions between constituent particles. It is
suggested that the DF can behave as a nearly perfect
fluid [18]: ⌘/s approaches a conjecture by Kovtun-Son-
Starinets: (⌘/s)/(~/kB) & 1/4⇡ for a strongly inter-
acting system [42]. A non-perturbative hydrodynamic
framework can be employed to estimate ⌘, as we discuss
elsewhere [41]. A direct measurement of ⌘ is of great
interest.

We have experimentally discovered the breakdown of
the WF law and provided evidence for the hydrodynamic
behavior of the Dirac fermions in graphene. This pro-
vides an experimentally realizable Dirac fluid and opens
the way for future studies of strongly interacting rela-
tivistic many-body systems. Beyond a diverging thermal
conductivity and an ultra-low viscosity, other peculiar
phenomena are expected to arise in this plasma. The
massless nature of the Dirac fermions is expected to re-
sult in a large kinematic viscosity, despite a small shear
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양자물질의 현상: Phenomena of strong Interaction 0) 
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•  높은 초전도 임계 온도(1987)	

SSRL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL 
Structural Molecular Biology Program is supported by the National Institutes of Health, National Center 
for Research Resources, Biomedical Technology Program and by the U.S. DOE, Office of Biological and 
Environmental Research.   

new ARPES results, but also resolves the contradictory results on the superconducting gap 
deduced from different experimental techniques. 
 

 
Fig. 1  The symmetrized spectra at (A) the tip of the Fermi Arc region and (B) the antinodal region. Their 
corresponding locations on the Fermi surface are shown in the inset of (A). The shaded area denotes the region 
inside the gap. (C) Doping dependence of the gap magnitude on various locations along the Fermi Arc region and in 
the antinodal region with their locations shown in the inset together with Tc. The dashed line indicates the 
pseudogap at the antinodal region reported by previous ARPES studies on Bi2212 system. 
 
This two-gap scenario has two important implications that could be important for developing 
a microscopic theory of high-Tc superconductivity. First, the pseudogap near the antinodal 
region in these deeply underdoped samples is unlikely a precursor state of the 
superconducting state, as had been suggested previously [2,3]. Instead, it is more likely a 
state that competes with the superconducting state [4,5]. Second, these data suggest that 
the weakened superconductivity in the underdoped regime arises not only from the loss of 
phase coherence associated with the decrease in the superfluid density but also due to the 
weakening of the pairing amplitude. In this case, a mechanism for the superconducting gap 
reduction could be related to the shrinkage of the coherent Fermi surface with less doping, 
leading to a smaller phase space for pairing. 
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•  강상관계를 특징짓는 현상은 무엇인가?		
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1.  (quasi-) Particle Lost ! 

양자물질의 근본적 특성: Character of strong Interaction i) 
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δ-function=Particle	
resonance=quasi-particle	
…….	
…….	
SplitàMott	insulator	

Im[
1

⇡

�1

! � Ek + i✏
] = �(! � Ek),
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Interaction	:	EàE-iΓ/2	



양자물질의 근본적 특성: Character  of strong Interaction (ii) 
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	Plankian Dissipation:  
	Quantum	Entanglement	àQCP			

	
아이디어:		
얽힘의 비국소성		+	양자중첩도 일종의 평균	

Planckian dissipation !

Universal entropy production time in QC system: !
  

€ 

τ = τ ! ≈
!
kBT

  

€ 

ρ ∝
1
τ !

∝ kBT

Observed in Quark gluon 
plasma (heavy ion colliders 
RIHC, LHC) and cold atom 
�unitary fermi gas�:!

Since early 1990�s recognized as 
responsible for strange metal 
properties, also linear resistivity high 
Tc metals ??:!

⌘

s
= T ⌧~ =

1

4⇡

~
kB

Planckian dissipation !

Universal entropy production time in QC system: !
  

€ 

τ = τ ! ≈
!
kBT

  

€ 

ρ ∝
1
τ !

∝ kBT

Observed in Quark gluon 
plasma (heavy ion colliders 
RIHC, LHC) and cold atom 
�unitary fermi gas�:!

Since early 1990�s recognized as 
responsible for strange metal 
properties, also linear resistivity high 
Tc metals ??:!

⌘

s
= T ⌧~ =

1

4⇡

~
kB

2. Abnormally Rapid Thermalization    
     à  Hydro-dynamic description 

absence of
EF

kBT



		

•  무엇이 문제인가?		
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Difficulty in calculation  in standard formalism. 
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Im[
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] = �(! � Ek),
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Interaction	:	EàE-iΓ/2	



Hubbard	Model:		가느냐 마느냐 그것이 문제로다…?		No!					

17	

Coupling	=	U/t		(대부분의 실험은	t	를 조절)	
	
2차원이상은	80년이상 풀리지 않았다.		

To	move	or	not	to	move,	that	is	the	problem!	
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강상호작용계의 문제	:	일반적 계산방법의 부재 	

커플링의 관점	
1.  다체의 양자역학적 계산법 =	장론	
2.  일반장론의 구조	:		(자유입자+상호작용 g)	à	섭동론		

g=U/t	(or	t/U),							A=	1+	a	g2+b	g3	+c	g4	+	….	
	g>=1		à	?		

얽힘의 관점	
1.  약상관관계:	셀 몇개만 계산하면 된다.	
2.  강상관관계:	macroscopic	입자 갯수가 서로 얽혀있다.	
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강상관계에서는 UV scale 구조àIR scale 기능 이 성립하지 않는다.    

문제의 의미: 환원론이 작동하지 않는다 
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keV	 meV	

응집물리학:	X-ray	data	à	수송계수 		

물리학:	구조à기능	(	쿽à양성자)					



Contents		
•  Part	I:	문제 제기 Question	
	
•  Part	II:	해결의 아이디어	Idea	to	the	solutions	
	
•  Part	III:	새 이론의 결과	
													-Transport	in	Dirac	metal,		
									-Spectral	density	of	V2O3	
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idea?		

•  거시 스케일 양자얽힘이 중요 à 양자임계점이 중요	
•  양자임계점과 블랙홀의 유사성	

21	

QCP	
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양자임계점	

1.  macroscopic	갯수의 입자가 연결	
	à 모든 크기의 에너지 요동이 생성	
	à 양자임계점근처의 동역학		
	 	T=0	(시간박스의 크기=1/T	à∞	)	

	
2. 	임계점에서의 발산:	

	i)임계점=질서변수의 부적절성의 시발점	
	 	물리량 =	0		or		∞ 	(예:	물-기체의 임계점)		
	ii)스케일이 없는 자유도의 출현	(ω=kz)	

 
QCP 분류:  dynamical exponent  z,	θ:				 	ω=kz,			[s]=D-θ	
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양자임계점:	Scale	invariance와 보편성의 출현 	

23	

QCP	

스케일 부재			
à 대칭성을 제외한 격자구조가 무시. vast simplification 

àInformation Loss  
à Universality à data scaling의 출현의 이유   	
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Black Hole  has  
 
i)  정보상실/ 보편성/ 대머리. 

ii)	열역학.	(1법칙ßà중력장방정식)			
	 	 	 	 	 	 	 	 	 	 	 	So is the QCP	
                                 
      .  

블랙홀과 정보소실 à		양자상전이점과의 유사성	

18.10.10@SNU.colloquium	

Quantum	Critical	point	



	블랙홀과  홀로그래피	

25	

Black	hole	:	열역학 0,1,2,3	법칙 		

•  Bekenstein:		

	 	부피가 아니라 면적		ß	Principle	of	equivalence		
	
à	3차원 블랙홀의 짝 양자상전이계는  2차원의 계	!			
	
	
	
	

18.10.10@SNU.colloquium	

SBH =
Area

4G



	블랙홀과 양자상전이간의  쌍대성 	

2차원 강상관계의 홀로그램   = 			3차원 블랙홀   	
	

	 	à	(양자)	홀로그래피	
26	

3	dim.	
Classical	
BH	

2	dim.		
Quantum		
Matter 
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모든 스케일의 자유도들이 서로 관련	k.	Wilson	:	RG	 		

à 에너지 스케일이 하나의 차원으로 등장		
à 각각의 단면이 Quantuam	Entanglement	
						에 의해 연결되어 한차원 높은 공간을 형성	
à Holography=RG	
 
 
 
 

                                 
      .  

양자임계점관점에서의  홀로그래피	

18.10.10@SNU.colloquium	

QCP	



Exact	holographic	duality	found			

둘 사이의 관계가 정확히 수립되는 계의 존재 :	J.	Maldacena		
	N=4	Supersymmetric	gauge	theory	=	Gravity	in		AdS5	x	S5	

	
정식화 :	Ed.	Witten,		Gubser+Klebanov+Polyakov	

	 	홀로그래피=계산의 방법론	
	
à 쌍대성의		SHO//H-atom	를 수립	(1998)		
à 계산의 정식화:	모든 쌍대성에 확장	
	
현실적 물리계에의 적용을 통한 체계의 수립?	
Large	N?	SUSY?		
….	진행중.	
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Results		
•  Part	I:	문제 제기 
	

•  Part	II:	아이디어	
	
•  Part	III:	새 이론의 결과  	

													-Anomalous	Transport	in	Dirac	metal,		
	

							-Mott	transition,	Spectral	density	of	V2O3	
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Type	i	:	Dirac	Materials	

18.10.10@SNU.colloquium	 30	

1.  Graphene	and	anomalous	transport	

2.  Topological	insulator	and	magnetotransport	



graphene	

31	

Simplest	QCP	with		z=1			

Q: 강상관계?		Yes	:	Tiny FS à small screening  à Type	II		양자물질	
 

g2eff =
e2

~c
1

vF

1

✏

18.10.10@SNU.colloquium	

Charge	from	Dirty	Substrate	à	FS	not	small.		

Key:	BN	substrate	à	10	years	of	delay				
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ELECTRON TRANSPORT

Observation of the Dirac fluid and the
breakdown of the Wiedemann-Franz
law in graphene
Jesse Crossno,1,2 Jing K. Shi,1 Ke Wang,1 Xiaomeng Liu,1 Achim Harzheim,1

Andrew Lucas,1 Subir Sachdev,1,3 Philip Kim,1,2* Takashi Taniguchi,4 Kenji Watanabe,4

Thomas A. Ohki,5 Kin Chung Fong5*

Interactions between particles in quantum many-body systems can lead to collective behavior
described by hydrodynamics. One such system is the electron-hole plasma in graphene near
the charge-neutrality point, which can form a strongly coupled Dirac fluid.This charge-neutral
plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the
thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics.
Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude
increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the
thermally populated charge-neutral plasma in graphene.This result is a signature of the Dirac
fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.

U
nderstanding the dynamics of many inter-
acting particles is a formidable task in phys-
ics. For electronic transport inmatter, strong
interactions can lead to a breakdown of the
Fermi liquid (FL) paradigm of coherent

quasi-particles scattering off of impurities. In
such situations, provided that certain conditions
are met, the complex microscopic dynamics can
be coarse-grained to a hydrodynamic description
of momentum, energy, and charge transport on
long length and time scales (1). Hydrodynamics
has been successfully applied to a diverse array of

interacting quantum systems, fromhigh-mobility
electrons in conductors (2) to cold atoms (3) and
quark-gluon plasmas (4). Hydrodynamic effects
are expected to greatly modify transport coef-
ficients compared with their FL counterparts, as
has been argued for strongly interactingmassless
Dirac fermions in graphene at the charge-neutrality
point (CNP) (5–8).
Many-body physics in graphene is interesting

because of electron-hole symmetry and a linear
dispersion relation at the CNP (9, 10). Together
with the vanishing Fermi surface, the ultra-
relativistic spectrum leads to ineffective screening
(11) and the formation of a strongly interacting
quasi-relativistic electron-hole plasma known as
a Dirac fluid (DF) (12). The DF shares many fea-
tures with quantum critical systems (13): most
importantly, the electron-electron scattering time
is fast (14–17) and well suited to a hydrodynamic
description. Because of the quasi-relativistic na-
ture of the DF, this hydrodynamic limit is de-
scribed by equations (18) quite different from

those applicable to its nonrelativistic counter-
parts. A number of unusual properties have been
predicted, including nearly perfect (inviscid) flow
(19) and a diverging thermal conductivity, which
results in the breakdown of theWiedemann-Franz
(WF) law at finite temperature (5, 6).
Away from theCNP, graphenehas a sharpFermi

surface, and the standardFLphenomenologyholds.
By tuning the chemical potential, we are able to
measure thermal and electrical conductivity in
both the DF and the FL in the same sample. In a
FL, the relaxation of heat and charge currents is
closely related, as they are carried by the same
quasi-particles. The WF law (20) states that the
electronic contribution to a metal’s thermal con-
ductivity ke is proportional to its electrical con-
ductivity s and temperature T, such that the
Lorenz ratio L satisfies

L ≡
ke
sT

¼ p2

3
kB
e

! "2

≡ L0 ð1Þ

where e is the electron charge, kB is the Boltz-
mann constant, and L0 is the Sommerfeld value
derived from FL theory. L0 depends only on
fundamental constants, not specific details of the
system such as carrier density or effective mass.
As a robust prediction of FL theory, the WF law
has been verified in numerous metals (20). At
high temperatures, the WF law can be violated
due to inelastic electron-phonon scattering or
bipolar diffusion in semiconductors, even when
electron-electron interactions are negligible (21).
In recent years, several nontrivial violations of
theWF law—all of which are related to the emer-
gence of non-FL behavior—have been reported
in strongly interacting systems such as Luttinger
liquids (22), metallic ferromagnets (23), heavy fer-
mionmetals (24), and underdoped cuprates (25).
Owing to the strong Coulomb interactions be-

tween thermally excited charge carriers, the WF
law is expected to be violated at the CNP in a DF.
An electric field drives electrons and holes in op-
posite directions; collisions between them intro-
duce a frictional dissipation, resulting in a finite
conductivity even in the absence of disorder (26).
In contrast, a temperature gradient causes elec-
trons and holes to move in the same direction,
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FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. (2) are undeter-
mined for any given sample: lm and H. For simplic-
ity, we assume we are well within the DF limit where
lm and H are approximately independent of n. We fit
Eqn. (2) to the experimentally measured L(n) for all
temperatures and densities in the Dirac fluid regime to
obtain lm and H for each sample. Fig 3C shows three
representative fits to Eqn. (2) taken at 60 K. lm is esti-
mated to be 1.5, 0.6, and 0.034 µm for samples S1, S2,
and S3, respectively. For the system to be well described
by hydrodynamics, lm should be long compared to the
electron-electron scattering length of ⇠0.1 µm expected
for the Dirac fluid at 60 K [18]. This is consistent with
the pronounced signatures of hydrodynamics in S1 and
S2, but not in S3, where only a glimpse of the DF appears
in this more disordered sample. Our analysis also allows
us to estimate the thermodynamic quantity H(T ) for the
DF. The Fig. 3C inset shows the fitted enthalpy density
as a function of temperature compared to that expected
in clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H

varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
is necessary [40, 41]. The enthalpy densities reported
here are larger than the theoretical estimation obtained
for disorder free graphene, consistent with the picture
that chemical potential fluctuations prevent the sample
from reaching the Dirac point. While we find thermal
conductivity well described by Ref. [5, 6], electrical con-
ductivity increases slower than expected away from the
CNP, a result consistent with hydrodynamic transport in
a viscous fluid with charge puddles [41].

In a hydrodynamic system, the ratio of shear viscos-
ity ⌘ to entropy density s is an indicator of the strength
of the interactions between constituent particles. It is
suggested that the DF can behave as a nearly perfect
fluid [18]: ⌘/s approaches a conjecture by Kovtun-Son-
Starinets: (⌘/s)/(~/kB) & 1/4⇡ for a strongly inter-
acting system [42]. A non-perturbative hydrodynamic
framework can be employed to estimate ⌘, as we discuss
elsewhere [41]. A direct measurement of ⌘ is of great
interest.

We have experimentally discovered the breakdown of
the WF law and provided evidence for the hydrodynamic
behavior of the Dirac fermions in graphene. This pro-
vides an experimentally realizable Dirac fluid and opens
the way for future studies of strongly interacting rela-
tivistic many-body systems. Beyond a diverging thermal
conductivity and an ultra-low viscosity, other peculiar
phenomena are expected to arise in this plasma. The
massless nature of the Dirac fermions is expected to re-
sult in a large kinematic viscosity, despite a small shear

	First	data		
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3

with the Planck time ⇠ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je � Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = �en2. The total electric con-
ductivity � = @J

@E and  can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 � Q2 together with the
proportionality constant gn of Qn = gnQ:

� = �0(1 + (Q/Q0)
2),  =

̄

1 + (1 + g2n)(Q/Q0)2
, (16)

where

�0 =
e2

~ 2Z0, ̄ =
4⇡kB
~

sT

k2
, Q2

0 =
~�0

4⇡kB
sk2. (17)

To fix the parameters, we used four measured values of
ref. [11] at 75K, �0 = 0.338/k⌦, ̄ = 7.7nW/K , Q0 =
e ·320/(µm)2, together with the curvature of density plot
of  to fix gn = 3.2. and assumed charge conjugation
symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

We replace all r0 dependence by s, the entropy density
by s = 4⇡kBr20. Cosmological constant is not determined
due to the inherent scale symmetry.

Now, why we can set the proportionality of the two

charges as given in eq. (13). To avoid the issues involved
in the transport by puddle, we simply assume that well
localized puddles do not contribute transport or simply
assume that the system is homogeneous. Under such
assumption, the number densities of electrons and holes
created by thermal excitation is proportional to the net
charge density: for the fermi liquid case, out of total
degree of freedom (d.o.f) n ⇠ k2F ⇠ µ2, excitable d.o.f is
⇠ kT · µ, because the excitable shell width is kT . But
in hydrodynamic regime, kT >> µ, therefore entire non-
degenerate charge distribution region is excitable. In fact
this is a typical situation of fermion dynamics described
by AdS black hole [27, 28]. In summary, in case of the
hydrodynamic regime, the charge carrier density created
is proportional to total degree of freedom, Q, which is
the volume of the Dirac cone above the Dirac point.

We remark that due to strong Coulomb interaction,
the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [29, 30], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
should be able to make bound state. The abundance of
such excitons are remained to be verified experimentally.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such

(a)

(b)

FIG. 1. Holography v.s the experimental data: (a) density
plot of �. (b) density plot of . Red circles are for data used
in [11, 13], dashed lines are for one current model and real
lines are for two current model. The white region is the Dirac
fluid regime in which our theory works, while the shaded area
is the fermi liquid regime.

a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

r⌫T
µ⌫ = hOIirµ�

0
I + F 0

µ⌫ hJ
⌫
i . (18)

The role of the source field �0
I = kxI is the chemical

potential of impurity and that of hOIi is the density of
impurity. Therefore, k2 can be understood as the density
of the uniform impurity.
The puddle e↵ect on the transport: One important

source of the disorder in graphene is known to be the
the charge density inhomogeneity, [11, 13, 31], which is
completely neglected here. Then why the theory could
match the experiment so well? A partial answer is that
while the DC conductivities directly depends only on the

3

with the Planck time ⇠ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je � Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = �en2. The total electric con-
ductivity � = @J

@E and  can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 � Q2 together with the
proportionality constant gn of Qn = gnQ:

� = �0(1 + (Q/Q0)
2),  =

̄

1 + (1 + g2n)(Q/Q0)2
, (16)

where

�0 =
e2

~ 2Z0, ̄ =
4⇡kB
~

sT

k2
, Q2

0 =
~�0

4⇡kB
sk2. (17)

To fix the parameters, we used four measured values of
ref. [11] at 75K, �0 = 0.338/k⌦, ̄ = 7.7nW/K , Q0 =
e ·320/(µm)2, together with the curvature of density plot
of  to fix gn = 3.2. and assumed charge conjugation
symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

We replace all r0 dependence by s, the entropy density
by s = 4⇡kBr20. Cosmological constant is not determined
due to the inherent scale symmetry.

Now, why we can set the proportionality of the two

charges as given in eq. (13). To avoid the issues involved
in the transport by puddle, we simply assume that well
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4	basic	parameters.		
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where the o↵-diagonal components of each transport coe�cient are zero in this case. The

other point is that the thermo-electric coe�cient ↵ and ↵̄ is linear in the charge density q.

The thermal conductivity is defined by

ij = ̄ij � T ↵̄ik�
�1
kl ↵lj. (8)

Together with (7) and (8), we get simple relation between the electric conductivity and the

thermal conductivity;

 =
̄

�
=

(4⇡)
2

�2
· r0T

1 +
q2

r20�
2

. (9)
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2.3 Momentum relaxation with two U(1) field
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2

One can see that if ev ⇠ r2 in asymptotic region, Qi

corresponds to the charge density of the boundary field
theory. To compute the transport coe�cients, we turn
on small fluctuations around the background solution as
given in equation (A3, A4). From the A field fluctuation
equations, the currents are defined by [18],

J1 =
p
�gZ(�)F xr, J2 =

p
�gW (�)Gxr

Q = U(r)2
d

dr

✓
�gtx(r)

U(r)

◆
�A(r)J1 �B(r)J2. (4)

Notice that near the boundary, the heat current becomes
Q = T tx

�µ1J1�µ2J2. Moreover, these currents are con-
served along radial direction r. Therefore their boundary
values are related to that of horizon data.

Finally, we get the boundary current in terms of the
external sources:

J1 =

✓
Z0 +

e�v0Q2
1

k2�0

◆
E1 +

e�v0Q1Q2

k2�
E2 +

4⇡TQ1

k2�0
⇣,

J2 =

✓
W0 +

e�v0Q2
2

k2�0

◆
E2 +

e�v0Q1Q2

k2�
E1 +

4⇡TQ2

k2�0
⇣

Q =
4⇡TQ1

k2�0
E1 +

4⇡TQ2

k2�0
E2 +

(4⇡T )2ev0

k2�0
⇣.

(5)

The eq. (5) can be written in matrix form, Ji = ⌃ijEj ,
with J3 = Q and E3 = ⇣. The transport coe�cients can
be read o↵ from the eq. (5) and the definition

0

@
�1 � ↵1T
�̄ �2 ↵2T

↵̄1T ↵̄2T ̄T

1

A := ⌃. (6)

Notice that the matrix is real and symmetric, so that the
Onsager relations hold:

↵̄i = ↵i, �̄ = �. (7)

The heat conductivity  is defined by the response of the
temperature gradient to the heat current in the absence
of other currents: setting J1 and J2 to be zero in (5), we
can express E1 and E2 in terms of ⇣. Substituting these
to the first line of (5), we get

 = ̄�
T ↵̄1(↵1�2 � ↵2�)

�1�2 � ��̄
�

T ↵̄2(↵2�1 � ↵1�̄)

�1�2 � ��̄
. (8)

To discuss more explicitly, we consider a black hole solu-
tion with two charges:

U(r) = r2 �
m0

r
�

k2

2
+

1

4r2

✓
Q2

1

Z0
+

Q2
2

W0

◆
, (9)

where m0 is given by U(r0) = 0 and the temperature is

T =
r0
4⇡

✓
3�

k2

2r20
�

Q2
1

4Z0r40
�

Q2
2

4W0r40

◆
. (10)

The solutions of U(1) gauge fields are a(r) = µ1 �
q1
r ,

b(r) = µ2 �
q2
r . Notice qi = Qi/Zi with Z1, Z2 being

Z0,W0 respectively. For the finite vector norm gµ⌫AµA⌫

at the horizon r = r0, we need µi = qi/r0.
The conductivities for any number of conserved cur-

rents can be calculated explicitly:

�i = Zi +
Q2

i

r20k
2
, �ij =

QiQj

r20k
2
,  =

̄

1 +
P

i 4⇡Q
2
i /sk

2Zi
,

with ̄ = 4⇡sT/k2, s = 4⇡r20 and Zi is the coupling of
Ai. If we identify the total electric current as J =

P
i Ji

and thermo-electric force Ei = E � Tr(µi/T ), we can
calculate the electric conductivity to give

� =
@J

@E
=

X

i

�i +
X

i,j

�ij = Z + 4⇡Q2/sk2, (11)

where Q =
P

i Qi and Z =
P

i Zi, showing the additivity
of density independent part of the electric conductivity.
If we define the heat conductivity due to the i-th current
by 1/i = 1/̄ + Q2

i /Zis2T , then the heat conductivity
formula leads us to additivity of density dependent part

of the inverse heat conductivity. Therefore

D[1/] =
X

i

D[1/i], D̄[�] =
X

i

D̄[�i], (12)

where D[f ], D̄[f ] denote the density dependent and in-
dependent part of f , respectively.
Finally we claim that the experimental data of

graphene will be well fit with two current theory if we
assume the proportionality of two charges

Q2 = gQ1, (13)

whose justification will be discussed later. This assump-
tion together with the second additivity eq.(12) is what
makes our two current model work.
Origin of two Currents in Graphene: What is

the nature and the origin of the extra current in the
graphene. There are a few attractive candidates. The
first idea is the e↵ect of imbalance [4] between the elec-
trons and holes due to the kinematical constraints of the
Dirac cone. When there is such an deviation of electron
and hole density from their equilibrium value, then the
system has tendency to reduce the di↵erence by creat-
ing/absorbing electron-hole pair:

e� $ e� + h+ + e�, h+
$ h+ + h+ + e� (14)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (15)
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Finally we claim that the experimental data of

graphene will be well fit with two current theory if we
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Q2 = gQ1, (13)

whose justification will be discussed later. This assump-
tion together with the second additivity eq.(12) is what
makes our two current model work.
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must hold. The point is that, for the graphene, the lin-
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sured from a Dirac point,
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and hole density from their equilibrium value, then the
system has tendency to reduce the di↵erence by creat-
ing/absorbing electron-hole pair:

e� $ e� + h+ + e�, h+
$ h+ + h+ + e� (14)

In such processes, energy and momemtum conservations
must hold. The point is that, for the graphene, the lin-
ear dispersion relation severely reduces the kinematically
available states [4]: If we define ~q as a momentum mea-
sured from a Dirac point,

~q1 = ~q2 + ~q3 + ~q4, |~q1| = |~q2|+ |~q2|+ |~q3|, (15)
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(albeit with negligible quantum entanglement) insofar as they
do not admit a controllable description via kinetic theory.
Furthermore, it has been shown [27] that strongly interacting
quantum critical fluids have a somewhat different hydrody-
namic description than the canonical Fermi liquids described
above, and this can lead to very different hydrodynamic
properties, including in transport [20,21,27– 31], as we will
review in this paper.

Using novel techniques to measure thermal transport
[32– 34], the Dirac fluid has finally been observed in
monolayer graphene, and evidence for its hydrodynamic
behavior has emerged [35], as we will detail. However,
existing theories of hydrodynamic transport are not consistent
with the simultaneous density dependence in experimentally
measured thermal and electrical conductivities. In this paper,
we improve upon the hydrodynamic theory of Ref. [27],
describe carefully effects of finite density, and develop a
nonperturbative relativistic hydrodynamic theory of transport
in electron fluids near a quantum critical point. Under
certain assumptions about the equations of state of the
Dirac fluid, our theory is quantitatively consistent with
experimental observations. The techniques we employ are
included in the framework of Ref. [36], which developed a
hydrodynamic description of transport in relativistic fluids
with long-wavelength disorder in the chemical potential [36]
was itself inspired by recent progress employing the AdS/CFT
correspondence to understand quantum critical transport in
strange metals [31,37– 44], but as we will discuss, this theory
is also well suited to describe the physics of graphene.

A. Summary of results

The recent experiment [35] reported order-of-magnitude
violations of the Wiedemann-Franz law. The results were
compared with the standard theory of hydrodynamic transport
in quantum critical systems [27], which predicts that

σ (n) = σQ + e2v2
Fn

2τ

H
, (2a)

κ(n) = v2
FHτ

T

σQ

σ (n)
, (2b)

where e is the electron charge, s is the entropy density, n is the
charge density (in units of length−2), H is the enthalpy density,
τ is a momentum relaxation time, and σQ is a quantum critical
effect, whose existence is a new effect in the hydrodynamic
gradient expansion of a relativistic fluid. Note that up to σQ,
σ (n) is simply described by Drude physics. The Lorenz ratio
then takes the general form

L(n) = LDF

(1 + (n/n0)2)2
, (3)

where

LDF = v2
FHτ

T 2σQ

, (4a)

n2
0 = HσQ

e2v2
Fτ

. (4b)

L(n) can be parametrically larger than LWF (as τ → ∞
and n ≪ n0), and much smaller (n ≫ n0). Both of these
predictions were observed in the recent experiment, and fits of
the measuredL to (3) were quantitatively consistent, until large
enough n where Fermi liquid behavior was restored. However,
the experiment also found that the conductivity did not grow
rapidly away from n = 0 as predicted in (2), despite a large
peak in κ(n) near n = 0, as we show in Fig. 1. Furthermore,
the theory of Ref. [27] does not make clear predictions for the
temperature dependence of τ , which determines κ(T ).

In this paper, we argue that there are two related reasons
for the breakdown of (2). One is that the dominant source of
disorder in graphene—fluctuations in the local charge density,
commonly referred to as charge puddles [45– 48]—are not
perturbatively weak, and therefore a nonperturbative treatment
of their effects is necessary [49]. The second is that the
parameter τ , even when it is sharply defined, is intimately
related to both the viscosity and to n, and this n dependence is
neglected when performing the fit to (2) in Fig. 1. We develop a
nonperturbative hydrodynamic theory of transport which relies
on neither of the above assumptions, and gives us an explicit
formula for τ in the limit of weak disorder. The key assumption
for the validity of our theory is that the size of the charge
puddles is comparable to or larger than the electron interaction
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FIG. 1. A comparison of our hydrodynamic theory of transport with the experimental results of Ref. [35] in clean samples of graphene at
T = 75 K. We study the electrical and thermal conductances at various charge densities n near the charge neutrality point. Experimental data
are shown as circular red data markers, and numerical results of our theory, averaged over 30 disorder realizations, are shown as the solid blue
line. Our theory assumes the equations of state described in (27) with the parameters C0 ≈11, C2 ≈9, C4 ≈200, η0 ≈110, σ0 ≈1.7, and
(28) with u0 ≈0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the Wiedemann-Franz law is restored, and
our hydrodynamic theory is not valid in or near this regime. We also show the predictions of (2) as dashed purple lines, and have chosen the
three-parameter fit to be optimized for κ(n).
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which request the co-linearity of all momentum vectors
~q1, · · · , ~q4. Therefore available phase space is greatly re-
duced. Such kinematical constraints maintains the non-
equilibrium states and as a consequence, the two currents
Je, Jh behave independently for a long time compared
with the Planck time ⇠ ~/kT , which is the time for hy-
drodynamics to work.

The net electric current J and total number current
Jn which become neutral at Dirac point, are defined by
J = Je + Jh, Jn = Je � Jh, respectively and their elec-
tric charge densities and number densities are related
by Q1 = en1 and Q2 = �en2. The total electric con-
ductivity � = @J

@E and  can be expressed in terms of
Q = Q1 + Q2 and Qn = Q1 � Q2 together with the
proportionality constant gn of Qn = gnQ:

� = �0(1 + (Q/Q0)
2),  =

̄

1 + (1 + g2n)(Q/Q0)2
, (16)

where

�0 =
e2

~ 2Z0, ̄ =
4⇡kB
~

sT

k2
, Q2

0 =
~�0

4⇡kB
sk2. (17)

To fix the parameters, we used four measured values of
ref. [11] at 75K, �0 = 0.338/k⌦, ̄ = 7.7nW/K , Q0 =
e ·320/(µm)2, together with the curvature of density plot
of  to fix gn = 3.2. and assumed charge conjugation
symmetry to set W0 = Z0. Using these, the basic pa-
rameters of the theory as well as the entropy density can
be determined: 2Z0 = 1.387, k2 = 454

(µm)2 , s = 2044 kB
(µm)2 .

We replace all r0 dependence by s, the entropy density
by s = 4⇡kBr20. Cosmological constant is not determined
due to the inherent scale symmetry.

Now, why we can set the proportionality of the two

charges as given in eq. (13). To avoid the issues involved
in the transport by puddle, we simply assume that the
system is homogeneous. Then the number densities of
electrons and holes created by thermal excitation is pro-
portional to the net charge density: for the fermi liquid
case, out of total degree of freedom (d.o.f) n ⇠ k2F ⇠ µ2,
excitable d.o.f is ⇠ kT · µ, because the excitable shell
width is kT . But in hydrodynamic regime, kT >> µ,
therefore entire non-degenerate charge distribution re-
gion is excitable. In fact this is a typical situation of
fermion dynamics described by AdS black hole [27, 28].
In summary, in case of the hydrodynamic regime, the
charge carrier density created is proportional to total de-
gree of freedom, Q, which is the volume of the Dirac cone
above the Dirac point.

We remark that due to strong Coulomb interaction,
the created electron hole pairs can form the bound state,
exciton. Such excitons in homogeneous graphene satisfies
the linear relations between the electric charge and the
exciton number. Although exciton in graphene has been
discussed extensively [29, 30], mosts are only for bi-layer
graphene. However, we expect that strong coulomb in-
teraction in Dirac Fluid regime of single layer graphene
also should be able to make bound state.

(a)

(b)

FIG. 1. Theory vs. Data: (a)density plot of �, (b)that
of . Red circles are for data used in [11, 13], dashed lines
are for one current model and real lines are for two current
model. The parameters are fixed such that  plot is well fit.
The white color is the Dirac fluid regime in which our theory
works, and the blue shaded is for the fermi liquid one.

Discussions: In the presence of an extra current that
carries mainly heat, the violation of WFL is not direct
evidence of a Dirac fluid. However, the fact that such
a phenomenon is quantitatively well described by hydro-
dynamics and gauge/gravity duality, indicates that the
system is strongly correlated.
Disorder and the nature of the scalar field: The scalar

field provides momentum dissipation only when both its
gradient and the vacuum expectation value of its dual
operator, hOIi, are nonzero. The latter is the analogue
of charge density in electric field as one can see from the
Ward identity,

r⌫T
µ⌫ = hOIirµ�

0
I + F 0

µ⌫ hJ
⌫
i . (18)

The role of the source field �0
I = kxI is the chemical po-

tential of impurity and that of hOIi is the density of im-
purity, whose presence gives the momentum dissipation.
It is identified as the subleading order term of the fluctu-
ation of the scalar field near the boundary and nonzero
due to the presence of curvature in AdS spacetime. k2

can be understood as the density of the uniform impurity.
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Holography of the Dirac Fluid in Graphene with Two Currents
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Recent experiments have uncovered evidence of the strongly coupled nature of graphene: the
Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe
this strongly coupled plasma by a holographic model in which there are two distinct conserved U(1)
currents. We find that our analytic results for the transport coefficients for the two current model have a
significantly improved match to the density dependence of the experimental data than the models with only
one current. The additive structure in the transport coefficients plays an important role. We also suggest the
origin of the two currents.

DOI: 10.1103/PhysRevLett.118.036601

Introduction.—It has been argued that graphene near
charge neutrality forms a strongly interacting plasma, the
Dirac fluid. It does not have well-defined quasiparticle
excitations, and is amenable to a hydrodynamic description
[1–10]. Evidence for such a Dirac fluid has appeared in
recent experiments [11] on the violation of the Wiedemann-
Franz law (WFL) in extremely clean graphene near the
charge neutral point; the ratio of heat conductivity and
electric conductivity, L ¼ κ=Tσ, was found to be up to
20 times the Fermi liquid value.
The simplest hydrodynamic model [12], with pointlike

and uncorrelated disorder and a single conserved U(1)
current, agrees with the overall experimental trends, but
has difficulty capturing the density dependencies of both
the electrical (σ) and thermal (κ) conductivities [13]. An
alternative hydrodynamic model, the “puddle” model,
with long-wavelength disorder in the chemical potential
and a single conserved U(1) current, led to a better
agreement with observations [13], but still left room for
improvement.
In this Letter, we explore a model with two conserved

U(1) currents. The idea is that introducing a new neutral
current can enhance the transport of the heat relative to
that of the charge. Our model is formulated in holographic
terms [14,15], to utilize the recent progress in the develop-
ment of transport calculation in gauge-gravity duality
[16–27]. The Dirac fluid in our model is described by an
anti–de Sitter (AdS) black hole in 3þ 1 dimensions, the
holographic dual of a 2þ 1-dimensional system at finite
temperature. The momentum dissipation is treated using
scalar fields, which corresponds to weak pointlike dis-
order. We calculate electric, thermoelectric power, and
thermal conductivities analytically. We find that, under the

assumption that the conserved charges Q1, Q2 are propor-
tional to each other, the theoretical results for the density
dependencies of the electric and heat conductivities can
now satisfactorily match the experimental data in the
Dirac fluid regime.
One possible mechanism for the extra current is the

kinematic constraints of energy-momentum conservation
on the Dirac cone, which reduce the phase space of
electron and hole scattering significantly [4], allowing
electrons and holes to form independent currents as long
as the relaxation time for mixing between the currents is
presumed to be much longer than the Planckian relax-
ation time ℏ=kBT, the time required for the hydro-
dynamic regime to work. It should be noted, however,
that the estimates of electron and hole equilibration
times are made in a quasiparticle framework [4], whose
validity in hydrodynamic regime is just assumed here.
We see that the kinematics on the Dirac cone also
provide a reason why the two charge densities can be
proportional.
dc transport with two Uð1Þ fields.—We start from the

action S¼
R
d4x

ffiffiffiffiffiffi−gp
L with two gauge fields Aμ, Bμ, a

dilaton field ϕ, and the scalar fields χ1, χ2 for momentum
dissipation,

L ¼ R −
1

2
½ð∂ϕÞ2 þ Φ1ðϕÞð∂χ1Þ2 þ Φ2ðϕÞð∂χ2Þ2&

− VðϕÞ − ZðϕÞ
4

F2 −
WðϕÞ
4

G2; ð1Þ

where F ¼ dA,G ¼ dB, F2 ¼ FμνFμν, etc. We also require
positivity of ΦiðϕÞ, ZðϕÞ, and WðϕÞ. The action (1) yields
equations of motion,
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Material Pseudospin Energy scale (eV) References

Graphene, Silicene, Germanene Sublattice 1–3 eV [5, 6, 17, 19, 36, 37]
Artificial Graphenes Sublattice 10�8–0.1 eV [28, 29, 38–40]
Hexagonal layered heterostructures Emergent 0.01–0.1 eV [41–47]
Hofstadter butterfly systems Energent 0.01 eV [46]
Graphene-hBN heterostructures in high magnetic fields

Band inversion interfaces Spin-orbit ang. mom. 0.3 eV [48–50]
SnTe/PbTe, CdTe/HgTe, PbTe

2D Topological Insulators Spin-orbit ang. mom. < 0.1eV [7, 8, 22, 24, 51, 52]
HgTe/CdTe, InAs/GaSb, Bi bilayer, ...

3D Topological Insulators Spin-orbit ang. mom. . 0.3eV [7, 8, 23, 52–55]
Bi1�xSbx, Bi2Se3, strained HgTe, Heusler alloys, ...

Topological crystalline insulators orbital . 0.3eV [56–59]
SnTe, Pb1�xSnxSe

d-wave cuprate superconductors Nambu pseudospin . 0.05eV [60, 61]
3He Nambu pseudospin 0.3 µeV [2, 3]
3D Weyl and Dirac semimetals Energy bands Unclear [32–34]
Cd3As2, Na3Bi

Table 1. Table of Dirac materials indicated by material family, pseudospin realization in the Dirac Hamiltonian,
and the energy scale for which the Dirac spectrum is present without any other states.

Recent ARPES measurements on Na3Bi [32] and Cd3As2 [33, 34] have found evidence
for a three-dimensional Dirac semimetal state in these materials.

At first (microscopic) sight, a material like graphene does hardly display any similarity
with typical d-wave superconductors or superfluids. There are important materials spe-
cific properties making all these materials distinct: some are superconductors and some
are (bulk) insulators; some are crystalline with honeycomb lattice (graphene or silicene),
others have a more complicated Perovskite crystal structure (cuprate superconductors)
or do not exhibit any crystalline order (3He-A phase). Also the physical realizations of
the Dirac pseudospin di↵er between these materials (c.f. Table 1) and the list of di↵er-
ences can be continued. But again, it is the universal properties related to the existence
of the low-energy Dirac excitations that justify the concept of Dirac materials. As a uni-
fying principle, the presence of nodes leads to a sharp reduction of the phase space for
low-energy excitations in Dirac materials. More precisely, the dimensionality of the set
of points in momentum space where we have zero-energy excitations is reduced in Dirac
materials as compared to normal metals. For example, nodes for a three-dimensional
Dirac material mean the e↵ective Fermi surface is shrunk from a two-dimensional ob-
ject to a point. Lines of Dirac nodes in three dimensions would mean that the Fermi
surface has shrunk from a two-dimensional surface to a one-dimensional line. In either
case there is a reduction of dimensionality for the zero-energy states. This reduction of
phase space controlled by additional symmetry in the system is an indicator for Dirac
materials. Reduced phase space and controlling symmetries are important for applica-
tions. First of all, it is possible to lift the protected symmetry of the Dirac node and
therefore destroy the nodes and open an energy gap. This modification of the spectrum
of quasiparticles drastically changes the response of the Dirac material, as for example
is the case for topological insulator in a magnetic field [35]. Second, Dirac nodes and
the resultant reduction of phase space suppress dissipation and are thus attractive for
applications exploiting the coherence of low-energy states in the nodes.
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1.	Bi2Te3			with	Cr	doping:	Bao	et.al,		SREP02391		

directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.

The quantum corrections to the 2D MC can be described by
the Hikami-Larkin-Nagaoka (HLN) model48 and is given analytically

by the equation Dsxx:sxx Bð Þ{sxx 0ð Þ~a
e2

ph½y 1
2
z

Bw

B

! "
{

ln
Bw

B

! "

$, where e is the electron charge, h is Planck’s constant, B

is the magnetic field, y is the digamma function, and a is a coefficient
whose value is determined by the nature of the corrections being WL

or WAL, or having contributions from both effects. Additionally, we
have Bw~

.
4el2

w in which the coherence length is characterized by
lw~

ffiffiffiffiffiffiffiffi
Dtw

p
, D is the diffusion coefficient and tw is the dephasing

time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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FIG. 6. (Color online) MC of Mn-Bi2Se3 in field perpendicular to the sample plane. (a) MC of the most lightly doped sample (Bi/Mn = 23.6)
shows a crossover from weak antilocalization to weak localization at T ∼ 3.0 K, consistent with the TC obtained from SQUID measurements.
(b) MC of the Bi/Mn = 12.5 sample shows larger positive MC, which survives up to ∼5 K. (c) MC of the Bi/Mn = 10.3 sample. (d) MC of
the most highly doped sample (Bi/Mn = 8.3). The insets in panels (a)–(d) plot temperature-dependent !σxx at fixed perpendicular magnetic
field. (e) MC of four Mn-Bi2Se3 and one undoped Bi2Se3 sample. (f) Simulation using Eq. (2) showing crossover from weak antilocalization
to weak localization as parameter !/(2EF ) changes.

the bulk states dominate the conductivity because of the large
Fermi energy: a simple estimate using the surface-state energy
dispersion and a Fermi energy 300 meV above the Dirac point
shows that the surface carrier density (∼1.3 × 1013 cm−2) is
about an order of magnitude smaller than that of the bulk in
our samples. Thus, an important question to address is the

coexisting surface and bulk conduction in our samples. The
classical contribution to the MC from bulk channels is well
known to result in a parabolic positive magnetoresistance or a
negative MC. According to diagrammatic calculations,28 the
quantum corrections to the conductivity of the lowest 2D bulk
quantum well states in Bi2Se3 are purely in the orthogonal
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FIG. 6. (Color online) MC of Mn-Bi2Se3 in field perpendicular to the sample plane. (a) MC of the most lightly doped sample (Bi/Mn = 23.6)
shows a crossover from weak antilocalization to weak localization at T ∼ 3.0 K, consistent with the TC obtained from SQUID measurements.
(b) MC of the Bi/Mn = 12.5 sample shows larger positive MC, which survives up to ∼5 K. (c) MC of the Bi/Mn = 10.3 sample. (d) MC of
the most highly doped sample (Bi/Mn = 8.3). The insets in panels (a)–(d) plot temperature-dependent !σxx at fixed perpendicular magnetic
field. (e) MC of four Mn-Bi2Se3 and one undoped Bi2Se3 sample. (f) Simulation using Eq. (2) showing crossover from weak antilocalization
to weak localization as parameter !/(2EF ) changes.

the bulk states dominate the conductivity because of the large
Fermi energy: a simple estimate using the surface-state energy
dispersion and a Fermi energy 300 meV above the Dirac point
shows that the surface carrier density (∼1.3 × 1013 cm−2) is
about an order of magnitude smaller than that of the bulk in
our samples. Thus, an important question to address is the

coexisting surface and bulk conduction in our samples. The
classical contribution to the MC from bulk channels is well
known to result in a parabolic positive magnetoresistance or a
negative MC. According to diagrammatic calculations,28 the
quantum corrections to the conductivity of the lowest 2D bulk
quantum well states in Bi2Se3 are purely in the orthogonal
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magnetization zero. The longitudinal conductivity in this
limit is

�xx =
(F + G

2)(F �H
2)

F2 +H2G2
. (13)

The MC is defined by �� ⌘ �xx(H)� �xx(0).
Consider the evolution of the system with the doping.

As the surface gap increases, the size of the fermi surface
decreases. See figure 1(a). At x=0.08 gap is large enough
to see transition from WAL to WL for some temperature,
but fermi surface is still large so that particle character
remains. At x=0.1, gap is large enough and fermi sur-
face is small enough to show strong coupling behavior, so
that our theory is well applicable. Figure 1(b) shows the
evolution of MC curve as we raise the doping rate assum-
ing that entire regime can be described holographically.
However the real system is strongly correlated only when
fermi surface is small enough. Therefore we expect that
our theory is valid only in a window of doping rate as well
as that of temperature. This is indeed what happens. In
figure 1(b), the green color indicates the validity island in
parameter space of (�, H), where our theory agrees with
experimental result of ref.[20].

X=0.10	
X=0.08	
X=0.00	

(a) (b)

FIG. 1. Evolution of (a) density of state and (b) MC as we
vary the doping. Again, our theory fit data only in an island
of parameter space (H, �), where � = x.

As we discussed earlier, the problematic part of the
data fitting in weakly interacting picture is the medium
doping regime x ⇠ 0.1 where the transition between the
WAL to WL is smooth. Does our theory fit data in such
region? The answer is given in figure 2, where we took
the data for x = 0.1. Here again, our theory is valid only
in an island of parameter space (H,T ). There are only
4 adjustable parameters: �,�, q�, vF . Others (T,H, µ)
are plot variables. From the data fitting point of view,
the 1.9 K data is di�cult to fit because it has too steep
curvature near zero magnetic field H = 0. If we fit it for
small field region, medium and large field regions are not
fit at all. We believe that at T = 1.9K the fermi surface
is still not small enough and our theory can not fit such
weakly interacting regime by tuning all 4 parameters.

Another important question is whether our result is
universal, namely, independent of details of the matter.
To answer this question at least partially, we worked out
two materials in the validity islands which is shown in

(a) (b)

FIG. 2. (a) Theory v.s data (circle) for x=0.1. T=1.9K is in
fermi liquid regime where our theory does not work. (b) ��

as function ofH and T . Our theory works in the green colored
island of (H,T ) space, where the system is strongly correlated.
We used �

2 = 2747
(µm)2

, vF = 7.5⇥ 104m/s, q� = 7.12.

figure 3(b). Figure 3(a) shows a remarkable similarity
in MC curves for di↵erent TI material. The transition
behavior seems be universal and well described by our
theory.
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FIG. 3. Universality of transition behavior: two di↵erent
materials are described by the same analytic expression with
di↵erent parameter values. (a) MC for Cr doped Bi2Te3 (left)
and for Mn doped Bi2Se3 (right). The data are from ref. [20]
and [19] respectively. (b) strong correlation islands for the
two. Bi2Se3 has bigger island due to the bigger bulk gap.

In weakly interacting picture, the non-trivial behav-
ior of magneto-conductivity in crossover regime is under-
stood by the competition between anti-localization in-
duced by spin-orbit coupling and the localization by sur-
face gap. In holographic picture, the enhancement in
conductivity can be understood as magneto-electric ef-
fect or Witten e↵ect. The interaction term dictates that
external magnetic field generates extra charge carriers
�q ⇠ ✓H to increase the conductivity. The result of the
competition is the sign change in the curvature of MC
curve near H = 0, where

�� ⇠ �
2(1� 4✓2/9)

r
2
0�

2
H

2 +O(H4). (14)

and ✓ = q���
2
/r

2
0. It also explains why crossover from

WAL to WL appears only in relatively low but not very
low temperature region, because r0 ⇠ T for high tem-
perature and ✓ becomes small so that 1 � 2✓/3 cannot
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vary the doping. Again, our theory fit data only in an island
of parameter space (H, �), where � = x.

As we discussed earlier, the problematic part of the
data fitting in weakly interacting picture is the medium
doping regime x ⇠ 0.1 where the transition between the
WAL to WL is smooth. Does our theory fit data in such
region? The answer is given in figure 2, where we took
the data for x = 0.1. Here again, our theory is valid only
in an island of parameter space (H,T ). There are only
4 adjustable parameters: �,�, q�, vF . Others (T,H, µ)
are plot variables. From the data fitting point of view,
the 1.9 K data is di�cult to fit because it has too steep
curvature near zero magnetic field H = 0. If we fit it for
small field region, medium and large field regions are not
fit at all. We believe that at T = 1.9K the fermi surface
is still not small enough and our theory can not fit such
weakly interacting regime by tuning all 4 parameters.

Another important question is whether our result is
universal, namely, independent of details of the matter.
To answer this question at least partially, we worked out
two materials in the validity islands which is shown in
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FIG. 2. (a) Theory v.s data (circle) for x=0.1. T=1.9K is in
fermi liquid regime where our theory does not work. (b) ��

as function ofH and T . Our theory works in the green colored
island of (H,T ) space, where the system is strongly correlated.
We used �

2 = 2747
(µm)2

, vF = 7.5⇥ 104m/s, q� = 7.12.

figure 3(b). Figure 3(a) shows a remarkable similarity
in MC curves for di↵erent TI material. The transition
behavior seems be universal and well described by our
theory.

○○○○○○
○○○

○○○
○○
○○○

○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○

○○○○○
○○○
○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

T=2.5K

T=3.1K

T=6K

0.0 0.1 0.2 0.3 0.4

-0.6

-0.4

-0.2

0.0

0.2

H(T)

Δσ

Cr0.1Bi1.9Te3

○○○○○○
○○
○○○
○○○
○○○○○

○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○
○○
○○○
○○○○○

T=3

T=4

T=5

T=7

0.0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0.0

0.2

H(T)

Δσ

Mn0.08Bi1.92Se3

(a) (b)

FIG. 3. Universality of transition behavior: two di↵erent
materials are described by the same analytic expression with
di↵erent parameter values. (a) MC for Cr doped Bi2Te3 (left)
and for Mn doped Bi2Se3 (right). The data are from ref. [20]
and [19] respectively. (b) strong correlation islands for the
two. Bi2Se3 has bigger island due to the bigger bulk gap.

In weakly interacting picture, the non-trivial behav-
ior of magneto-conductivity in crossover regime is under-
stood by the competition between anti-localization in-
duced by spin-orbit coupling and the localization by sur-
face gap. In holographic picture, the enhancement in
conductivity can be understood as magneto-electric ef-
fect or Witten e↵ect. The interaction term dictates that
external magnetic field generates extra charge carriers
�q ⇠ ✓H to increase the conductivity. The result of the
competition is the sign change in the curvature of MC
curve near H = 0, where
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Such an interaction term was first introduced in [24] by
us to discuss the SOC. The strong SOC provides the
band inversion that induces massless chiral fermions at
the boundary, which in turn induces the chiral anomaly
as a nontrivial divergence of the chiral current. In fact,
our interaction term is unique in that it is the leading or-
der term that can take care of anomaly and its coupling
to impurity in a manner with time reversal symmetry
broken.

The solution of equation of motion is given by

A = a(r)dt+
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, (3)

where µ is the chemical potential, q is charge carrier den-
sity. q and m0 is determined by the regularity condition
at the black hole horizon, At(r0) = U(r0) = 0.

q = µr0 +
1

3
✓H with ✓ =
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Usually the chemical potential is proportional to the
charge density. However, in our model, there is extra
term ⇠ ✓H, which represents the Witten e↵ect, the mag-
netic field generation by electric charge and vice versa. It
comes from the last term of the action whose microscopic
origin is the spin-orbit interaction[25, 26].

The temperature of the physical system is identified by
the Hawking temperature of the black hole given by

T =
12r40 �

⇥
H

2 + 2r20(↵
2 + �

2) + (q �H✓)2
⇤

16⇡r30
(6)

and the entropy and energy densities are given by s =
4⇡r20, ✏ = 2m0 respectively. Since the boundary on-shell
action is related with pressure by Sonshell = �P, we
get " + P = s T + µ q. Then, the magnetization can be
obtained from M = �

@✏

@H
.

DC transport coe�cients can be calculated by turn-
ing on small fluctuations around background (3) [27];

�Gti = �tU(r)⇣i + �gti(r), �Gri = r
2
�gri

�Ai = t(�Ei + ⇣ia(r)) + �ai(r), (7)

where i = x, y. Notice that equations of motion for fluc-
tuation are time-independent, although there is explicit
time dependence in above ansatz. Here Ei corresponds
to the external electric field and ⇣i = �@iT/T . We define
bulk currents by

J
i =

p
�gF

ir
, Q

i = U(r)2@r

✓
�gti(r)

U(r)

◆
� at(r)J

i
. (8)

which become the electric and the heat current J i, Qi =
hT

ti
i�µJ

i respectively at the boundary(r ! 1). Using
the equations of motion of the fluctuation fields together
with the horizon regularity condition, we can get electric
and heat current at the boundary in terms of the external
sources;

J
i =

(F + G
2)(F �H

2)

F2 +H2G2
Ei

+


✓ +

HG(2F + G
2
�H

2)

F2 +H2G2

�
✏ijEj

+
sTG(F �H

2)

F2 +H2G2
⇣i +

sTH(F + G
2)

F2 +H2G2
✏ij⇣j

Q
i =

sTG(F �H
2)

F2 +H2G2
Ei +

sTH(F + G
2)

F2 +H2G2
✏ijEj

+
s
2
T

2
F

F2 +H2G2
⇣i +

s
2
T

2
HG

F2 +H2G2
✏ij⇣j , (9)

where ⇣i = �(riT )/T as before and

F = r
2
0(↵

2 + �
2) + (1 + ✓

2)H2
� q ✓H

G = q � ✓H. (10)

Now, the transport coe�cients can be read o↵ from

✓
J
i

Q
i

◆
=

✓
�ij ↵ijT

↵̄ijT ̄ijT

◆✓
Ej

⇣j

◆
. (11)

In q� ! 0 limit, Eq. (9) are reduced to those of dy-
onic black hole [28–31]. There are two important symme-
tries of the DC conductivities: one is the anti-symmetry
of the o↵-diagonal components, i.e, Xij = �Xji for all
X = �,↵, ̄; and the other is ↵ij=↵̄ij , which is Onsager’s
relation. If we further take H ! 0 limit,

�xx ! 1 +
q
2

r
2
0(↵

2 + �2)
. (12)

Notice that if we define �2 = ↵
2+�

2, � = �
2

↵2+�2 , then �
2

plays the role of the total impurity density used in [24],
and �

2 and ↵
2 can be interpreted as the magnetic and

non-magnetic impurity density respectively. Therefore �

corresponds to the magnetic doping parameter, which is
usually denoted by x in the literature.

Magneto-conductance:
To compare our results with the data for the non-ferro

magnetic material, we take µ = 0 to set the ferromagnetic

2Δ	
X=0.00	
X=0.08	
X=0.12	

EF	

Figure 1. Evolution of density of state. As we increase the doping and thereby the surface gap
of the TI, the fermi surface gets smaller.

including thermal and thermo-electric transports of surface states of topological insulators

in the regime of strong correlation. We will give 3D plots of each of them. Since not much

data are available for heat transport or thermo-electric transports of Dirac material in such

regime, our study can be regarded as predictions of holographic theory for generic Dirac

materials in the vicinity of charge neutral point 2.

2 Gravity dual of the surface of TI with magnetic doping

Although our target is general Dirac material not just for Topological Insulator (TI), we

want to setup holographic formalism to describe the surface of it, which is one of the

most well studied material with Dirac cone. Phenomenologically, we will be interested in

magneto-transport of TI surface as a consequence of surface gap which is generated by the

magnetic doping.

2.1 Holographic Formulation of the surface state

We setup the holographic model by a sequence of reasonings.

1. The key feature of Topological bulk band is the presence of a surface normalizable

zero-mode. It happens when the bulk band is inverted and one known mechanism

for band inversion is large spin-orbit interaction. So considering boundary is crucial

to discuss TI.

2. On the other hand, in Holographic theory, having both bulk and boundary of a

physical system is very di�cult, if not impossible, since the bulk of the physical system

is already at the boundary of AdS space. In this situation, we have to ’carefully’ delete

either bulk or boundary for holographic description, depending on one’s goal. Our

2Our treatment can be applied for the case with surface gap as well as the case without gap as far as
the system can be considered as a conductor.

– 3 –
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We investigate e↵ects of strong correlation on the surface state of topological insulator (TI). We
argue that electrons in the regime of crossover from weak anti-localization to weak localization, are
strongly correlated and calculate magneto-transport coe�cients of TI using gauge gravity principle.
Then, we examine, magneto-conductivity (MC) formula and find excellent agreement with the data
of chrome doped Bi2Te3 in the crossover regime. We also find that cusp-like peak in MC at low
doping is absent, which is natural since quasi-particles disappear due to the strong correlation.

PACS numbers: 11.25.Tq, 71.10.-d, 72.15.Rn

Introduction: Understanding strongly correlated
electron systems has been a theoretical challenge for sev-
eral decades. Typically, such systems lose quasi-particles
and show mysteriously rapid thermalization [1–4], which
provide the hydrodynamic description [5, 6] of them near
quantum critical point (QCP). Recently, the principle of
gauge-gravity duality [7–9] attracted much interest as a
possibility of the paradigm for strongly interacting sys-
tems, where the system near QCP is mapped to a black
hole. More recently, large violation of Widermann-Frantz
law was observed in graphene near charge neutral point,
indicating that it is a strongly interacting system [10] in
a window of temperature, and the gauge gravity prin-
ciple applied to it exhibited remarkable agreement with
the experimental data [11].

The fundamental reason for the appearance of the
strong interaction in graphene is the smallness of the
fermi sea: in the presence of the Dirac cone, when fermi
surface is near the tip of the cone, electron hole pair cre-
ation from such a small fermi sea is insu�cient to screen
the Coulomb interaction. Because this is so simple and
universal, one can expects that for any Dirac material,
there should be a regime of parameters where electrons
are strongly correlated. Dirac cone also provides the rea-
son why it is a quantum critical system with Lorentz
invariance. The most well known Dirac material other
than the graphene is the surface of a topological insula-
tor (TI) [12, 13]. The latter has an unpaired Dirac cone
and strong spin-orbit coupling, and as a consequence, it
has a variety of interesting physics[14–16] including weak
anti-localization (WAL) [17].

Magnetic doping in TI can open a gap in the surface
state by breaking the time reversal symmetry [18–20],
and it is responsible for the transition from WAL to weak
localization(WL). For extreme low doping, the sharp
horn of the magneto-conductivity curve near zero mag-
netic field can be described by Hikami-Larkin-Nagaoka
(HLN) function [21]. However, for intermediate doping
where the tendency of WAL and weak localization (WL)
compete, a satisfactory theory is still wanted [18, 20, 22]
although there is a phenomenological description [23]
Even in the case the fermi surface is large at low dop-
ing so that the system is a fermi liquid, increasing the
surface gap pushes up the dispersion curve, which makes

the fermi sea small. Then, the logic for strong cou-
pling in graphene works for transition region in surface of
TI. Therefore electron system near the transition region
should be strongly correlated.
In this paper, we investigate magneto-conductivity

(MC) for the surface of a topological insulator with cor-
related electrons using gauge gravity principle. We will
give analytic formulae of all the magneto-transports on
the surface of TI with strong correlation as a function
of magnetic field, temperature and impurity density and
compare the result with Bi2Te3 data of [20]. Most inter-
estingly, in the doping regime with crossover from WAL
to WL, our theory agrees with experimental data nicely
in a window of temperature justifying our suggestion that
electrons in the experimented material are strongly cor-
related in this regime. Our results also show that the
cusp-like peak in MC curve at fixed temperature, which
is the hall-mark of WAL in the weakly interacting sys-
tem, is absent, which can be argued to be a consequence
of strong correlation.
Idea of the model: Our system is the surface of topo-

logical insulator which is a 2+1 dimensional system with
odd number of Dirac cones. Our question is what hap-
pens if such system has strong correlation as well and
the recipe for strong electron-electron interaction is to
use gauge gravity principle or holography. For TI, spe-
cial care is necessary to encode strong spin-orbit coupling
(SOC). Our holographic model is defined on a manifold
M which is asymptotically AdS4. With these setup, our
model is defined by the action,

22
S =

Z

M
d
4
x
p
�g

2

4R+
6

L2
�

1

4
F

2
�

X

I,a=1,2

1

2
(@�(a)

I
)2

3

5

�
q�

16

Z

M

X

I=1,2

(@�(2)
I

)2F ^ F (1)

where q� is the coupling and 
2 = 8⇡G and L is the

AdS radius. From now on, we set 22 = L = 1. The
action contains two pairs of bosons, one for the magnetic
impurities and the other for the non-magnetic ones. To
encode the e↵ect of SOC in the presence of the magnetic
doping, we introduced the last term which is a coupling
between the impurity density and the instanton density.

18.10.10@SNU.colloquium	

+SJS 

	 	Published	in	Phys.Rev.	B96	(2017)	no.4,	041104	(rapid	communications)	

Small	Fermi	Surfaces	and	Strong	Correlation	Effects	in	Dirac	Materials	with	Holography	
	 	 	Y.	Seo,	G.	Song,	C.	Park		+	SJS	
	 	 	 	 	 	Published	in	JHEP	1710	(2017)	204		

		

		

�ij(B, T, nimp)
<latexit sha1_base64="01Iz8l+9uCaaIaN8dNoUpjajw5s=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5tkhiQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5g5hRpR3nyyqsrK6tbxQ3S1vbO7t79v5BR0WJxKSNIxbJXoAUYVSQtqaakV4sCeIBI91gcj2rd++JVDQSLT2NicfRSNCQYqSN5dtHA0VHHPkpvcsqjWqrKgzyODvz7bJTc+aCf8HNoQxyNX37czCMcMKJ0JghpfquE2svRVJTzEhWGiSKxAhP0Ij0DQrEifLS+QUZPDXOEIaRNE9oOHd/TqSIKzXlgenkSI/Vcm1m/lfrJzq88lIq4kQTgReLwoRBHcFZHHBIJcGaTQ0gLKn5K8RjJBHWJrSSCcFdPvkvdM5rrlNzby/K9UYeRxEcgxNQAS64BHVwA5qgDTB4AE/gBbxaj9az9Wa9L1oLVj5zCH7J+vgG2k6WfA==</latexit><latexit sha1_base64="01Iz8l+9uCaaIaN8dNoUpjajw5s=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5tkhiQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5g5hRpR3nyyqsrK6tbxQ3S1vbO7t79v5BR0WJxKSNIxbJXoAUYVSQtqaakV4sCeIBI91gcj2rd++JVDQSLT2NicfRSNCQYqSN5dtHA0VHHPkpvcsqjWqrKgzyODvz7bJTc+aCf8HNoQxyNX37czCMcMKJ0JghpfquE2svRVJTzEhWGiSKxAhP0Ij0DQrEifLS+QUZPDXOEIaRNE9oOHd/TqSIKzXlgenkSI/Vcm1m/lfrJzq88lIq4kQTgReLwoRBHcFZHHBIJcGaTQ0gLKn5K8RjJBHWJrSSCcFdPvkvdM5rrlNzby/K9UYeRxEcgxNQAS64BHVwA5qgDTB4AE/gBbxaj9az9Wa9L1oLVj5zCH7J+vgG2k6WfA==</latexit><latexit sha1_base64="01Iz8l+9uCaaIaN8dNoUpjajw5s=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5tkhiQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5g5hRpR3nyyqsrK6tbxQ3S1vbO7t79v5BR0WJxKSNIxbJXoAUYVSQtqaakV4sCeIBI91gcj2rd++JVDQSLT2NicfRSNCQYqSN5dtHA0VHHPkpvcsqjWqrKgzyODvz7bJTc+aCf8HNoQxyNX37czCMcMKJ0JghpfquE2svRVJTzEhWGiSKxAhP0Ij0DQrEifLS+QUZPDXOEIaRNE9oOHd/TqSIKzXlgenkSI/Vcm1m/lfrJzq88lIq4kQTgReLwoRBHcFZHHBIJcGaTQ0gLKn5K8RjJBHWJrSSCcFdPvkvdM5rrlNzby/K9UYeRxEcgxNQAS64BHVwA5qgDTB4AE/gBbxaj9az9Wa9L1oLVj5zCH7J+vgG2k6WfA==</latexit><latexit sha1_base64="01Iz8l+9uCaaIaN8dNoUpjajw5s=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5tkhiQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5g5hRpR3nyyqsrK6tbxQ3S1vbO7t79v5BR0WJxKSNIxbJXoAUYVSQtqaakV4sCeIBI91gcj2rd++JVDQSLT2NicfRSNCQYqSN5dtHA0VHHPkpvcsqjWqrKgzyODvz7bJTc+aCf8HNoQxyNX37czCMcMKJ0JghpfquE2svRVJTzEhWGiSKxAhP0Ij0DQrEifLS+QUZPDXOEIaRNE9oOHd/TqSIKzXlgenkSI/Vcm1m/lfrJzq88lIq4kQTgReLwoRBHcFZHHBIJcGaTQ0gLKn5K8RjJBHWJrSSCcFdPvkvdM5rrlNzby/K9UYeRxEcgxNQAS64BHVwA5qgDTB4AE/gBbxaj9az9Wa9L1oLVj5zCH7J+vgG2k6WfA==</latexit>

ij(B, T, nimp)
<latexit sha1_base64="YfgSp/KYjmhpz3HqEsnVwwgFmMo=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5vJhCQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5A8Go0o7zZRVWVtfWN4qbpa3tnd09e/+go+JEYtLGMYtlL0CKMMpJW1PNSE9IgqKAkW4wuZ7Vu/dEKhrzlp4K4kVoxGlIMdLG8u2jwQQJgfyU3mWVRrVV5QYjkZ35dtmpOXPBv+DmUAa5mr79ORjGOIkI15ghpfquI7SXIqkpZiQrDRJFBMITNCJ9gxxFRHnp/IIMnhpnCMNYmsc1nLs/J1IUKTWNAtMZIT1Wy7WZ+V+tn+jwykspF4kmHC8WhQmDOoazOOCQSoI1mxpAWFLzV4jHSCKsTWglE4K7fPJf6JzXXKfm3l6U6408jiI4BiegAlxwCergBjRBG2DwAJ7AC3i1Hq1n6816X7QWrHzmEPyS9fEN09OWeA==</latexit><latexit sha1_base64="YfgSp/KYjmhpz3HqEsnVwwgFmMo=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5vJhCQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5A8Go0o7zZRVWVtfWN4qbpa3tnd09e/+go+JEYtLGMYtlL0CKMMpJW1PNSE9IgqKAkW4wuZ7Vu/dEKhrzlp4K4kVoxGlIMdLG8u2jwQQJgfyU3mWVRrVV5QYjkZ35dtmpOXPBv+DmUAa5mr79ORjGOIkI15ghpfquI7SXIqkpZiQrDRJFBMITNCJ9gxxFRHnp/IIMnhpnCMNYmsc1nLs/J1IUKTWNAtMZIT1Wy7WZ+V+tn+jwykspF4kmHC8WhQmDOoazOOCQSoI1mxpAWFLzV4jHSCKsTWglE4K7fPJf6JzXXKfm3l6U6408jiI4BiegAlxwCergBjRBG2DwAJ7AC3i1Hq1n6816X7QWrHzmEPyS9fEN09OWeA==</latexit><latexit sha1_base64="YfgSp/KYjmhpz3HqEsnVwwgFmMo=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5vJhCQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5A8Go0o7zZRVWVtfWN4qbpa3tnd09e/+go+JEYtLGMYtlL0CKMMpJW1PNSE9IgqKAkW4wuZ7Vu/dEKhrzlp4K4kVoxGlIMdLG8u2jwQQJgfyU3mWVRrVV5QYjkZ35dtmpOXPBv+DmUAa5mr79ORjGOIkI15ghpfquI7SXIqkpZiQrDRJFBMITNCJ9gxxFRHnp/IIMnhpnCMNYmsc1nLs/J1IUKTWNAtMZIT1Wy7WZ+V+tn+jwykspF4kmHC8WhQmDOoazOOCQSoI1mxpAWFLzV4jHSCKsTWglE4K7fPJf6JzXXKfm3l6U6408jiI4BiegAlxwCergBjRBG2DwAJ7AC3i1Hq1n6816X7QWrHzmEPyS9fEN09OWeA==</latexit><latexit sha1_base64="YfgSp/KYjmhpz3HqEsnVwwgFmMo=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAqlzIigy1I3Liv0Bu0wZNJMG5vJhCQjlGHc+CpuXCji1rdw59uYtrPQ6g+Bj/+cw8n5A8Go0o7zZRVWVtfWN4qbpa3tnd09e/+go+JEYtLGMYtlL0CKMMpJW1PNSE9IgqKAkW4wuZ7Vu/dEKhrzlp4K4kVoxGlIMdLG8u2jwQQJgfyU3mWVRrVV5QYjkZ35dtmpOXPBv+DmUAa5mr79ORjGOIkI15ghpfquI7SXIqkpZiQrDRJFBMITNCJ9gxxFRHnp/IIMnhpnCMNYmsc1nLs/J1IUKTWNAtMZIT1Wy7WZ+V+tn+jwykspF4kmHC8WhQmDOoazOOCQSoI1mxpAWFLzV4jHSCKsTWglE4K7fPJf6JzXXKfm3l6U6408jiI4BiegAlxwCergBjRBG2DwAJ7AC3i1Hq1n6816X7QWrHzmEPyS9fEN09OWeA==</latexit>



41 

    

18.10.10@SNU.colloquium	

Now,	Type	II		
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Type I and II  Unified in Holography 

QCP(z,θ) Geometry (z,θ)  

1 Introduction

The AdS/CFT correspondence, sometimes called as gauge/gravity duality, is a conjectured relationship

between quantum field theory and gravity. Precisely, in this correspondence, quantum physics of strongly

correlated many-body systems is related to the classical dynamics of gravity which lives in one higher

dimension. On the other hand according to the AdS/CFT dictionary, an AdS geometry at the gravity

side could only address the conformal symmetry of the dual field theory. However, the generalization of

gauge/gravity correspondence to geometries which are not asymptotically AdS seems to be important

as long as such extension may be related to the invariance under a certain scaling of dual field theory

which does not even have conformal symmetry. Such generalization of AdS is actually motivated by

consideration of gravity toy models in condensed matter physics (the application of such generalization

can be found, for example, in [2]). A prototype of this generalization is a theory with the Lifshitz fixed

point in which the spatial and time coordinates of a field theory have been scaled as

t → ζzt, x⃗ → ζx⃗, r → ζr, (1.1)

where z is the critical dynamical exponent. From the holographic duality point of view, for a (D + 1)-

dimensional theory, the corresponding (D+ 2)-dimensional gravity dual can be defined by the following

metric

ds2D+2 =
−dt2

r2z
+

dr2

r2
+

1

r2

D
∑

i=1

dx2
i , (1.2)

where in this paper the AdS radius is set to be one. Due to the anisotropy between space and time, it is

clear that this metric can not be an ordinary solution of the Einstein equation, in fact one needs some

sorts of matter fields to break the isotropy, e.g., by adding a massive vector field or a gauge field coupled

to a scalar field [3–6]. In general by adding a dilaton with non trivial potential and an abelian gauge

field to Einstein-Hilbert action (Einstein-Maxwell-Dilaton theory), one can find even more interesting

metrics, in particular the following metric has been used frequently [7]

ds2D+2 = r
2θ
D

(−dt2

r2z
+

dr2

r2
+

1

r2

D
∑

i=1

dx2
i

)

, (1.3)

where θ is hyperscaling violation exponent. This metric under the scale-transformation (1.1) transforms

as ds → ζ
θ
D ds. In a theory with hyperscaling violation, the thermodynamic parameters behave in such

a way that they are stated in D− θ dimensions; More precisely, in a (D+1)-dimensional theories which

are dual to background (1.2), the entropy scales with temperature as TD/z, however, in the presence of

θ namely dual to (1.3), it scales as T (D−θ)/z [7, 8]. Therefore one may associate an effective dimension

to the theory and this becomes important in studying the log behavior of the entanglement entropy of

system with Fermi surface in condense matter physics, explicitly it was shown that for θ = D − 1 for

any z, the entanglement entropy exhibits a logarithmic violation of the area law [9]. On the other hand

for such backgrounds time-dependency can be achieved by Vaidya metric with a hyperscaling violating

factor. It is the main aim of this paper to investigate how entanglement (mutual information) spreads

in time-dependent hyperscaling violating backgrounds.

Basically, the AdS-Vaidya metric is used to describe a gravitational collapse of a thin shell of matter

in formation of the black hole. This metric in D + 2 dimensions is given by

ds2 =
1

ρ2

(

− f(ρ, v)dv2 − 2dρdv +
D
∑

i=1

dx2
i

)

, f(ρ, v) = 1−m(v)ρD+1, (1.4)

where ρ is the radial coordinate, xi’s (i = 1, .., D) are spatial boundary coordinates and, here, the

2

Dual? 

Transport coefficients 

Make a unique rule  Exp. data 
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Type	I:	z=1, 	 	 	 	Dirac	cone		
Type	II:	z>1		… ∞ 	 		(more)	Flat	band	
In	leading	order,			there	are	only			quantitative	difference.	



Mott	Transition		

18.10.10@SNU.colloquium	 43	

Mott transition in single-site DMFT

29

G Kotliar and D Vollhardt, Physics Today 57, 53 (2004).
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1.  Hubbard	model	in	d>1	à	Not	solvable	

2.  	finding	its	gravity	dual	is		V.	difficult.	à	title		

3.  Can	we	replace	the	Hubbard	Model	by	a	holographic-model?	

4.  Try	a	Holographic		Fermion	Model		
with	free	fermion	like	behavior	and	gap	generation.		



Spectral	function	
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2

(p,m) in the holographic model that gives qualitatively
the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.
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that, when we fix the value of  + at the boundary, �Sbd

cancel the terms including � � that comes from the to-
tal derivative of �SD. Similar story is true when we fix
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ground solution we will use is Reisner-Nordstrom black
hole in asymptotic AdS4 spacetime,

ds
2 = �r

2
f(r)

L2
dt

2 +
L
2

r2f(r)
dr

2 +
r
2

L2
d~x

2

f(r) = 1 +
Q

2

r4
� M

r3
, A = µ

⇣
1� r0

r

⌘
, (4)

where L is AdS radius, r0 is the radius of the black hole
and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).
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without shoulder (p=0.5, m=0.1), (e) PG (p=2.5,m=0.15),
(f) G (p=6, m=0.15)
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Therefore we may say that one embedding defines one
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embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
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(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).
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fermi-liquid phase and a point in the gapped phase would
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Therefore we may say that one embedding defines one
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embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
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boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
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(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).
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In this paper we treat the fermion as a probe and do
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details of getting the spectral density is described in the
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ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
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2(b) and (e). The di↵erence of semi-metal and Gapped
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FIG. 2. (a)-(e):Typical Fermion Phases and their Tempera-
ture evolutions. a) FL with (p=0.5, m=0.2), (b) BM’ with
shoulder (p=2, m=0.1,0.4), (c) SM (p=6, m=0.45), (d) BM
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(f) G (p=6, m=0.15)

Calculating	the	spectral	function	is	already	standard.		
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Figure 3. Phase diagram in (p, m) space. (a) Three phases which are gapless, psuedo-gap and Gapped
phases, appear and all transitions are smooth crossover. The gapless phase can be further divided into
four subregions: Fermi liquid like (FL), bad metals (BM), bad metal prime (BM’), half metal (hM).

dipole term. However, in the upper region, a new metallic phase appears instead of gapped

one. We call it half-metal phase, because significant fraction of density of state is depleted from

the quasi-particle peak near the Fermi level and moved to the shoulder region. The emergence

of this new metallic phase in the strongly coupled system was unexpected. To understand its

appearance, we study the e↵ect of the dipole term on the spectral density near m = 0.5. See

figure 4.

(a) m = 0.5, p = 0 (b) m = 0.5, p = 5 (c) m = 0.47, p = 5

Figure 4. Contour plot of spectral density for m ⇠ 0.5. Red line indicates the Fermi level. (a) At p = 0,
the degree of freedom follows the dispersion relation ! + µ = k, (b) At p = 5, new branch of dispersion
curve appears. (c) Lowering m from 0.5, the spectral curves are reconnected to avoid the ’level crossing’.

It turns out that the peak along the dispersion curve ! + µ = k exists along m = 0.5 line

although more and more degrees of freedom are depleted from the central peak and moved to

the shoulder as we increase p
2. We call the line m = 0.5 ‘the free fermion wall’. One important

e↵ect of the dipole term is the creation of new band. See figure 4(b). As p increases, it push

down the new band below the Fermi level so that a gap is created and will be increased. The

third e↵ect of increasing p is to make the new band sharper which means it keep transferring the

spectral density from the central peak to the shoulder peak. This is similar to the e↵ect of U

2
Previously, the free fermion phase near the m = 0.5 was noticed by Leiden group [13] at p = 0 and here we

study it in the presence of the gap generating dipole term.

– 9 –
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without and with bulk mass. which is contrasted with the
nonzero mass case where the fermi surface is remained at
substantially high temperature. See the Figure 11(c).
That is, the fermi liquid behavior is enhanced by the
presence of the bulk mass. Here again, we can see the
role of mass is the stabilizer of the quasi-particle nature
in holographic matter.

(a)Fast decay of FS by T (b)Mass as FS stabilizer

FIG. 11. Role of mass in stabilizing the fermi surface(FS):
(a)T = 0, 0.1, 0.4 at m = p = 0. (b)m = 0, 0.224, 0.448 at
T = 0.1 and p = 0.

As m ! 1/2, such ‘quasi-particle stabilizing tendency’
increases infinitely so that the system is a fermi liquid
whatever strength of the dipole term. In fact, the spec-
tral function shows that the dispersion curve is straight
line just as if we study a free fermions. Therefore it is
natural to think the bulk fermions with mass near 1/2
describe a weakly interacting system, i.e, quasi-particles.
For applications to the realistic material, having such a
dial to make the system fermi liquid in a limit is very use-
ful and in fact essential because in the real experiments,
one can tune the coupling by applying pressure or dop-
ing rate. In fact, for p = 0, it can be understood if we
notice that  is the dual of the operator with dimension
� = d/2 � m which is dimension of free fermion when
m = 1/2 so that the fermion with m = 1/2 in alternate
quantization is dual to the free fermion [7, 10]. In the
presence of the dipole coupling whose role is to introduce
a gap which break the conformal symmetry dynamically,
there is no guarantee that such trend continue to hold.
Our observation is that, nevertheless, such free fermion
nature at m = 1/2 persists even in the presence of the
dipole interaction regardless of its strength. We call it
Free fermion Wall in m-p phase diagram. After care-
ful examination of full range of phase diagram, we found
that at mass region m > 0.35, some metalic phases exist
always.

5. Hyperboic Embeddings

Following embedding is interesting since it illuminate
many hidden aspects of the theory including the physical
origin of the bulk mass. We set V 6= 0 but fixed instead
of being related to U .

p = (U + V )/t, and 2m = V/U  1. (13)

The constraint V/U  1 comes since the o↵-site repul-
sion is weaker than the on-site one. The corresponding
holographic Hubbard model is a hyperbola

p = �(
1

2m
+ 1), with � =

V

t
= fixed. (14)

This embedding has following consistency properties.

• In large U limit, both t-U -V model and its gravity
dual m-p model are in Gapped phase and even in
the smallest U limit, it does not pass the obvious
free fermion point (m, p) = (1/2, 0) because U � V .

• The first embedding with � = 4/3 (Blue curve)
passes SM ! BM

0 ! PG ! G and the sec-
ond one with � = 8/9 (Green curve) passes FL !
BM

0 ! PG ! G phases as U increases, The lat-
ter is also qualitatively consistent with evolution of
Hubbard model calculated with multi-site DMFT.
The graph is given below.

(a) (b) (c) (d)

FIG. 12. U -evolutions for Straight line Embedding ( V << U
). (a)-(d) are at marked point on Red line in the Figure 3(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 13. U -evolutions at kc for V 6= 0 cases (Hyperbolic
Embedding) . (a)-(d) for upper (Blue) curve, (e)-(h) for lower
(Green) curve, Spectral functions at kc for V 6= 0 (Green
Curve) in the Embedding diagram Figure 3(b).

Although we know the reason for the free fermion na-
ture of m = 1/2 by counting the conformal weight, it
is still somewhat mysterious from the interaction point
of view: How such freeness is achieved in a theory of
strong interaction? The bulk mass enter into dynamics
only in a combination mL with L being the AdS radius
which encodes the interaction strength of the boundary
theory through L ⇠ �

1/4. In fact, 1/2 is the maximal
value of mL within the unitarity bound. The most natu-
ral way to identify the mL’s gauge coupling dependance
is the o↵-site coulomb interaction V , and following ar-
gument shows a plausible way to understand the free

�FF = (d� 1)/2
m=1/2	is	Free	fermionic.	

Known	to	Gap	generating	
Phillips	et.al		

“Transition”	is	smooth	everywhere.	



6	phases	:	with	symmetrized	spectral	function		
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SM/hM	phase	:	상호작용있는	
topological	matter			
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U=0			à	U=infinity	

To	move	or	not	to	move,	that	is	the	problem!	
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Understanding	the	Gap	creation	

region is where gap-generation phenomena is observed as we expected from the presence of the

dipole term. However, in the upper region, a new metallic phase appears instead of gapped

one. We call it half-metal phase, because significant fraction of density of state is depleted from

the quasi-particle peak near the Fermi level and moved to the shoulder region. The emergence

of this new metallic phase in the strongly coupled system was unexpected. To understand its

appearance, we study the e↵ect of the dipole term on the spectral density near m = 0.5. See

figure 4.

(a) m = 0.5, p = 0 (b) m = 0.5, p = 5 (c) m = 0.47, p = 5

Figure 4. Contour plot of spectral density for m ⇠ 0.5. Red line indicates the Fermi level. (a) At p = 0,
the degree of freedom follows the dispersion relation ! + µ = k, (b) At p = 5, new branch of dispersion
curve appears. (c) Lowering m from 0.5, the spectral curves are reconnected to avoid the ’level crossing’.

It turns out that the peak along the dispersion curve ! + µ = k exists along m = 0.5 line

although more and more degrees of freedom are depleted from the central peak and moved to

the shoulder as we increase p
3. We call the line m = 0.5 ‘the free fermion wall’. One important

e↵ect of the dipole term is the creation of new band. See figure 4(b). As p increases, it push

down the new band below the Fermi level so that a gap is created and will be increased. The

third e↵ect of increasing p is to make the new band sharper which means it keep transferring the

spectral density from the central peak to the shoulder peak. This is similar to the e↵ect of U

in the DMFT calculation of Hubbard model. Now lowering m from 0.5, the spectral curves are

reconnected to avoid the ’level crossing’. Consequently, the density profile moves from Figure

4(b) to (c).

We can now understand the the role of mass in creating the half-metal phase: increasing

the m pushes up the new band created by p so that the band can cross the Fermi level. See

figure 5. This e↵ect competes with that of increasing p, but the e↵ect of mass is stronger. For

m > 0.35 the new band always crosses Fermi sea and this is the mechanism of the hM phase.

Notice that the new band touch the Fermi level at m = 0.35 for all p.

For small mass m < 0.35, the dipole interaction leads to metal-insulator transition as p

increases. For p > 4 and m = 0, gap is dynamically generated as it was shown by Phillips et.al

[9]. For larger mass, the gap generation requests slightly higher values of dipole strength. The

3
Previously, the free fermion phase near the m = 0.5 was noticed by Leiden group [13] at p = 0 and here we

study it in the presence of the gap generating dipole term.
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3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

(a) m = 0.25 (b) m = 0.35 (c) m = 0.45

Figure 5. m-evolution at p = 6 shows the origin of the the half-metalic phase: increasing the m pushes
up the new band, making the Fermi sea. Large p is responsible for the sharpness of new band.

pseudo-gap is nothing but the intermediate zone of this smooth transition, namely 0.8 < p < 4

for m = 0. Notice that in the phase diagram Figure 3, there is a rather large territory of PG.

Similarly, for m > 0.35, the dipole term drives BM’ -hM transition because the new band

always crosses the Fermi level. This is why strong dipole interaction leads to the half metal

rather then a Mott insulator for in this regime. As p increases the new band is narrowed and

sharpened but it never disappears even at very large p. In the appendix, we study the evolution

in m for fixed p and evolution in p for fixed m in more detail.

The figure 6(a) shows that in the absence of the bulk mass, peak in the spectral density

k-plot goes away very rapidly as we increase temperature. That is, quasi-particles are fragile

at finite temperature, which is the character of non-Fermi liquids. On the other hand, if we

increase the mass, the Fermi surface peak becomes sharper as we can see in the Figure 6(b).

We can see the role of mass is the stabilizer of the quasi-particle nature in holographic matter.

(a) (b)

Figure 6. Role of mass in stabilizing the Fermi surface (FS): (a)Fast decay of FS for nonzero Temperature
T = 0, 0.1, 0.4 at m = p = 0. (b) FS stabilized by bulk mass: m = 0, 0.24, 0.48 at T = 0.1 and p = 0.

As m ! 1/2, such ‘quasi-particle stabilizing tendency’ increases singularly so that the system

is a Fermi liquid like whatever is the strength of dipole term. In fact, the spectral function

shows that the dispersion curve is straight line as if it is a free fermion. For applications to the

realistic material, having such a dial to make the system Fermi-liquid-like in a limit is very useful
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for m = 0. Notice that in the phase diagram Figure 3, there is a rather large territory of PG.

Similarly, for m > 0.35, the dipole term drives BM’ -hM transition because the new band

always crosses the Fermi level. This is why strong dipole interaction leads to the half metal

rather then a Mott insulator for in this regime. As p increases the new band is narrowed and

sharpened but it never disappears even at very large p. In the appendix, we study the evolution

in m for fixed p and evolution in p for fixed m in more detail.

The figure 6(a) shows that in the absence of the bulk mass, peak in the spectral density

k-plot goes away very rapidly as we increase temperature. That is, quasi-particles are fragile

at finite temperature, which is the character of non-Fermi liquids. On the other hand, if we

increase the mass, the Fermi surface peak becomes sharper as we can see in the Figure 6(b).
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shows that the dispersion curve is straight line as if it is a free fermion. For applications to the
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Comparision	with	DMFT	results 

Single-site	DMFT	result	 Holography	with	embedding	

3

The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,
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Depending	on	the	path,	
evolution	is	different.	

A. Georges, et.al  Rev. Mod. Phys. 
68 (Jan, 1996) 13–125. 
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Transition metal oxides
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• Atomic quantum numbers: (n, l, m, ms)
• Partially filled d-shell: strongly correlated, multi-orbital
• O2-: anion 
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Fig. 12: Comparison of the calculated, parameter-free LDA+DMFT(QMC) spectra of SrVO3

(solid line) and CaVO3 (dashed line) with experiment. Left: Bulk-sensitive high-resolution PES

(SrVO3: circles; CaVO3: rectangles). Right: XAS for SrVO3 (diamonds) and Ca0.9Sr0.1VO3

(triangles) [86]. Horizontal line: experimental subtraction of the background intensity; after

Ref. [85].

7 Summary and outlook

Due to the intensive international research over the last two decades the DMFT has quickly

developed into a powerful method for the investigation of electronic systems with strong cor-

relations. It provides a comprehensive, non-perturbative and thermodynamically consistent ap-

proximation scheme for the investigation of finite-dimensional systems (in particular for dimen-

sion d = 3), and is particularly useful for the study of problems where perturbative approaches

are inapplicable. For this reason the DMFT has now become the standard mean-field theory

for fermionic correlation problems, including cold atoms in optical lattices [88–92]. The study

of models in non-equilibrium within a suitable generalization of the DMFT has become yet

another fascinating new research area [93–101].

Until a few years ago research into correlated electron systems concentrated on homogeneous

bulk systems. DMFT investigations of systems with internal or external inhomogeneities such

as thin films and multi-layered nanostructures are still very new [102–107]. They are par-

ticularly important in view of the novel types of functionalities of such systems, which may

have important applications in electronic devices. Here the DMFT and its generalizations will

certainly be very useful.

In particular, the development of the ab initio band-structure calculation technique referred to

as LDA+DMFT has proved to be a breakthrough in the investigation of electronically correlated

ß	DMFT	school	(2011)	Dieter	Vollhardt		
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very thin but high peak moves away from the fermi level
instead of disappearing. In the symmetrized density of
states in Figure 4(c,d), it appears as if the quasi-particle
peak is splitted into two peaks with a small gap between
them. In this figure, one should notice the sharpness of
transition between (c) and (d). Note also (d) is close to
the phase boundary. The peak does not disappear but
move away from the fermi sea to give an insulator, and
this is a sharp di↵erence between the DMFT result and
holographic one.

When the embedding line do not pass the SM phase
(Red line), the U -evolution resembles multi-site DMFT
result where the transition is smooth and it passes
through the Bad metal and Pseudo gap phases. Here
also it is manifest that during the U -evolution the degree
of freedom is being moved from from the head (quasi-
particle peak) to shoulder region which is consistent with
DMFT result [20]. See Figure 4. For more example see
Figure 12 in the appendix, where hyperbolic type embed-
dings are also considered.

Comparing with experiment : Our study on m, p

□□□□□
□□□

□□□
□ □
□
□
□

□

□
□
□

□□
□□
□□

□□□□

□
□□□□
□□□□
□□□□
□□
□□
□□□□□
□□□□□□□□

□□□□
□

□□
□□□□□□
□□□
□□□□□□

□□□□□□ □□□□□□□□□□ □□□□□□
□□□□□□□□□□□□

□□□□□

□□□□

□□□
□□□□
□□□□□□□□□

□
□ □□

○○
○○○

○○
○○○○
○○○○

○○○ ○
○○

○

○

○

○
○
○

○○
○○
○
○○○○
○○○○
○
○
○○
○○○○○○○○○○○○○○
○○○
○
○○○○○○ ○○○○○○○○○

○○○○
○○

○
○○
○○○
○○○○○ ○○

○○○
○○
○○
○○○

○○○○○○○○○
○○

○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○

0-1-2-3

ω

A(
ω
)

(a)PES data vs theory

◆

◆

◆

◆

◆

◆

◆◆

◆

◆

◆

◆

◆

◆◆◆◆
◆
◆
◆
◆◆
◆◆
◆
◆
◆◆

◆
◆
◆
◆

▼

▼

▼

▼

▼

▼▼▼
▼
▼
▼
▼▼
▼▼▼▼

▼▼
▼
▼ ▼▼

▼
▼
▼
▼

▼
▼
▼ ▼

0 1 2 3 4

ω

A(
ω
)

(b)XAS data vs theory

FIG. 5. Experimenal data vs holographic theory: (a) PES
data, (b) XAS data ; In both case (color red) is for SrVO3

and (color blue) is for CaVO3. The data for SrVO3 is from
[26], and that for CaVO3 is from [25].

holographic model will be useful for the interpretation
of experiments in Vanadium Oxides and other transition
metal Oxides. We take Photoemission (PES) data and
X-ray absorpsion spectroscopy data for SrVO3 (red cir-
cles and diamonds) [26] and Ca0.9Sr0.1VO3 (blue boxes
and triangles) [25] following the lecture note of Vollhardt
in [27] and DMFT study in [28, 29] and fit those with

our theory. The result is given in Figure 5. The pa-
rameters values of (m, p, kc) we used for the holographic
theory are as follows : (a) (0.47, 2.2,�2.08) for red line
and (0.47, 2.05,�2.04) for blue line, (b) (0.47, 1.9,�2.05)
for red line and (0.455, 1.7,�2.07) for blue line. We see
that the agreements between the theory and experiment
are remarkable. We recommend the readers to see the
FIG. 6 of ref. [29] to compare the same data with the
LDA+DMFT QMC spectra.

Our study shows that for any holographic Hubbard
model, the transfer of the degree of freedom from
the head(quasi-particle peak) to shoulder under the U -
evolution is manifest and that is consistent with DMFT
result [20]. For the order of phase transition our result
is smooth almost everywhere except the transition from
semi-metal to Gapped phase, where there are extremely
narrow channels of PG and BM’ phases which can be
hardly seen in the phase diagram so that the transition
is mathematically smooth but so rapid so that it can be
regarded as a first order. So the order of phase tran-
sition of a holographic Hubbard model depends on the
embedding trajectory.

The single site result of DMFT result shows that the
transition from metal to insulator is by narrowing of the
quasi particle peak (the central peak) and it remains un-
til it become an insulator. This is very similar to the
particular trajectory that passes through the SM phase.
However, we believe that the presence of the SM phase
is due to lack of back reaction, which is much more dif-
ficult to consider and this is remained as a future work.
The cluster DMFT study of the Hubbard model shows
the appearance of pseudo gap and bad metals but if one
increases the frustration, first order phase transition can
also happen. The authors of ref. [30] reported the coexis-
tence of insulating and metallic state in the intermediate
region of U/t, which is qualitatively similar to our situa-
tion to the case where embedding trajectory pass through
the phase boundary of SM to Gapped phase.
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The result of the detailed study of phases are sum-
marized by the phase diagram given in Figure 3(a). The
dashed line represents the free fermion wall, the FL phase
is located at the upper-left corner and gapped phase is at
the lower-right corner. All other phases are in between
the two and can be understood as their proximity and
competition e↵ects. Notice also that the phase diagram
is divided by the line of m ' 0.35: the lower half region
is where gap-generation phenomena is observed as we ex-
pected from the presence of the dipole term. However,
in the upper region, a new metalic phase appears instead
of gapped one. We call it semi-metal phase, because sig-
nificant fraction of density of state is depleted from the
quasi-particle peak near the fermi level and moved to
the shoulder region which is called Hubbard side peak.
The emergence of this new metalic phase in the strongly
coupled system was unexpected, which might be as sur-
prising as when DMFT calculation discovered a narrow
quasiparticle peak between the two Hubbard bands [22–
25]. The appearance of each phase are explained in detail
in the appendix for interested reader.
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FIG. 3. (a) Phase diagram in (p,m) space. Phase boundaries
are smooth crossover except SM-G transition. (b)An embed-
ding defines a holographic Hubbard model: ↵ = 1/50 (1/20)
for yellow (red) line in straight line embedding. � =8/9 (4/3)
for blue (green) curve in hyperbolic embedding.

Holographic Hubbard Models : Traditionally, the
physics of Mott transition is usually discussed using Hub-
bard model which describe the transition as the competi-
tion of hopping and onsite coulomb repulsion. So one of
the test of the usefulness of holographic method is to see
if it can encode the physics of Hubbard model at least
qualitatively. It is given by the Hamiltonian

H = �t(
X

c
†
i�cj� +H.c.) + U

X
ni�ni-� (5)

+V

X

<ij>

ninj + V2 + V3+

where and � is for spin index, t is the hopping rate, U
represents the on-site Coulomb repulsion and V is for
the nearest o↵-site repulsion and Vn is next to nearest
repulsion. These can be set to be zero in leading order.
The purpose of this section is to discuss how to realize the
physics of the Hubbard model in terms of the simplest
holographic model and to compare the result with DMFT
calculations and experiment.

Here, the question is, for any Hubbard model with
given values of t, U, V, Vi, · · · , can we find m and p that
produce the same or at least qualitatively the same spec-
tral density. The answer seems to be yes, because we al-
ready have seen that our phase diagram contains all six
phases that are available for the Hubbard model, there-
fore if we consider a line in the phase diagram connecting
two points, one in Fermi liquid phase and the other in
gapped phase, then it will give a mapping of an Hubbard
model into a holographic model and each such a path in
(p,m) space defines a “holographic Hubbard model”.
Here we consider the simplest embedding for U � V

and Vi = 0 for i � 2. Since both p and U are gap gen-
eration mechanism in each side, it is natural to identify
these: p = U/t. To identify the m in terms of the Hub-
bard model parameter, we need to observe following two:
i) m = 1/2 line has singularly strong e↵ect of restoring
the free fermion nature in the sense that there is a met-
alic spectrum around fermi sea with dispersion relation
! + µ = ±k, whatever large value p may have, as we
can see in Figure 8. Therefore we expect that t ! 1
when m ! 1/2� 0+; ii) m, by which we mean mL with
L being the radius of AdS, is related to the long range
coulomb repulsion V . Then it is reasonable to identify
V/t = (1/2 �m) and V = ↵U with ↵ ⌧ 1. Eliminating
V/t, we get

m+ ↵p = 1/2, p = U/t. (6)

Notice that it passes the free fermion point at (p,m) =
(0, 1/2) automatically. This embedding is analogous
to the original t-U model where all o↵-site repulsions
are negligible compared to on-site one. So we call it
standard embedding. We take two di↵erent values of
↵ = 1/50, 1/20 and give the resulting evolution as U in-
creases in Figure 3(b).

(a) (b) (c) (d)

FIG. 4. U -evolutions for Straight line Embedding ( V ⌧ U ).
(a)-(d) are at marked point of embedding diagram for Yellow
line

When the line passes through the SM phase, the evolu-
tion is similar to that of single-site one band DMFT result
in the sense that the MIT progresses with narrowing the
quasi-particle peak by transferring the DOS to the shoul-
der region, i.e, Hubbard band. However, the way Mott
gap open is di↵erent. In DMFT, the quasiparticle peak
disappear by making its residue vanish at critical Uc. On
the other hand, in holography, the gap open by moving
o↵ the dispersion curve from the fermi level, which can be
done either by lowering m or by increasing p. For exam-
ple, when the embedding line crosses the phase boundary
at large p as in the yellow line of embedding diagram,

	Holography	



Future	results	
•  Mott	gap	in	type	1	(z>1),	spin	Liquid		
•  asymmetry,	magnetism,	backreaction.	
•  instability,		d-wave	condensation.		
•  other	gap	generation	mechanism	
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1 Gap generation for general coupilng

We start from fermion action with general coupling;

S =

Z p
�gi ̄

�
/D �m� igvBµ�

µ � igaB
(5)
µ �5µ � igTMµ⌫�

µ⌫
�
 

�
Z p

�gi ̄
�
g0M0 + ig5M5�

5
�
 , (1)

where Mµ⌫ is anti-symmetric tensor. We define

Bt = p
h
1�

⇣r0
r

⌘↵i

Bi,Mµ⌫ ,Ms,Ma = p r�↵

(2)

here we set Bt vanishes at the horizon r = r0. We turn on momentum along x direction
kx = k. The summaries of gap generation for each couplings are:

↵ 0 1 2 3

Bt�t ·    
Bx�x  # # #
By�y # # # #

Table 1: gv 6= 0,  : Gapless, #: Gapped

↵ 0 1 2 3

B(5)
t �5t ·    

B(5)
x �5x  0 # # #

B(5)
y �5y # # # #

Table 2: ga 6= 0,  : Gapless, #: Gapped,  0: gapless only m = 0 and becomes unsta-
ble(negative spectral function) with finite mass. B(5)

x term becomes unstable for large
coupling.
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Why rapid Thermalization? 
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1. General formalism to construct finite temperature

retarded Green functions and transport coefficients

[4].

2. Mean field theory of superconductivity with s-wave

condensation without explicit Higgs potential [5].

Similarly models with p-wave [6] as well as

d-wave [7] condensation were constructed.  

3. Models generating the resistivity linear in

temperature [8,9,10].

4. Gravity dual of fluid [11,12,13]. 

5. Models showing metal-insulate transition generated

by interaction. It is probed by the behavior of AC

conductivity [14]. 

6. Transport near quantum critical point [15]

7. Models with Fermion coupling that induces Mott

gap [16].

8. Understanding easy thermalization in strong

coupling [17]. See figure 3. 

9. Holography of Non-Fermi Liquid [18,19,20] 

We can design models to solve any of the mysterious

features of strongly correlated electron systems. But

we still do not have a model having all the properties

of high-Tc material. 

This is a very rapidly developing field and I hope we

can hear good news soon. See [21] for a review. 

With some luck, we will have a calculable theory of

strongly interacting many-body systems soon. 

FIG. 3 Any shape of shell falls to form a black hole in one

dynamical time. This special dynamics in AdS is the

mechanism for easy thermalization for strong coupling

[17].  
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Near	Future	subject		
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•  Mott	gap	in	class	2	(z>1),		
•  Moire	Pattern	and	Flat	Band		
•  spin	Liquid,	Fractionization	
•  CDW,	instability,	other	gap	generation	mechanism	
•  d-wave	condensation.		
•  Strange	metal	
•  Pairing	
•  magnetism,	backreaction.	



Conclusion	

	
•  중력 à 강상관계를 위한 새로운 물리학으로 역할		

•  전이금속 산화물,	디랙물질을 통일적으로 기술	

•  21세기 장론/응집물리학의 새 방향	
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How	to	formulate	fermion				

For	conductivity	:	need	<JJ>	:		(J,A)	à	extend	A	into	AdS	
	 	 	 	 	 	F^2	in	the	bulk	

	For	spectrum:			need	<χχ>		:		(ψ,χ)	à	extend	ψ	into	AdS	
	 	 	 	 						ψ(D-m)ψ	+bulk	interaction.		

What	interaction?		
	 	 	 	 							pψ	F.Γ	ψ.			à	Gap	(Phillips	et.al)	

	
comment:	Gravity	already	accounted		
e-e	long	range	repulsion	in	the	absence	of	the	lattice.		
So	p	describe	the	onsite	repulsion.		
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Spectral	function	
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2

(p,m) in the holographic model that gives qualitatively
the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.

The holographic model : Our starting point is the
fermion action with non-minimal dipole interaction,

SD =

Z
d
4
x
p
�gi ̄

�
�MDM �m� ip�MN

FMN

�
 + Sbd,

(1)

where the subscript D denotes the Dirac fermion and the
covariant derivative is

DM = @M +
1

4
!abM�ab � iqAM . (2)

For fermions, the equation of motions are first order
and we can not fix the values of all the component
at the boundary, which make it necessary to introduce
‘Gibbons-Hawking term’ Sbd to guarantee the equation
of motion which defined as

Sbd =
±1

2

Z
d
3
x

p
h ̄ =

±1

2

Z
d
3
x

p
h( ̄� + +  ̄+ �),

(3)

where h = �gg
rr,  ± are the spin-up and down compo-

nents of the bulk spinors. The sign is to be chosen such
that, when we fix the value of  + at the boundary, �Sbd

cancel the terms including � � that comes from the to-
tal derivative of �SD. Similar story is true when we fix
 �. The former defines the standard quantization and
the latter does the alternative quantization. The back-
ground solution we will use is Reisner-Nordstrom black
hole in asymptotic AdS4 spacetime,

ds
2 = �r

2
f(r)

L2
dt

2 +
L
2

r2f(r)
dr

2 +
r
2

L2
d~x

2

f(r) = 1 +
Q

2

r4
� M

r3
, A = µ

⇣
1� r0

r

⌘
, (4)

where L is AdS radius, r0 is the radius of the black hole
and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).

(a)fermi liquid (FL) (b)bad metal prime

(BM’)

(c)semi-metal (SM)
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(p,m) in the holographic model that gives qualitatively
the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.
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fermion action with non-minimal dipole interaction,
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0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
p

(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).
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details of getting the spectral density is described in the
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ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
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and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.
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and Q = r0 µ,M = r0(r20 + µ

2). The temperature of the

boundary theory is given by T = f
0(r0)/4⇡ and it can

be solved for r0 to give r0 = (2⇡T +
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(2⇡T )2 + 3µ2)/3.
In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
appendix.

It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
tral peak is higher or lower than the shoulder. See Figure
2(b) and (e). The di↵erence of semi-metal and Gapped
phase is whether they have central peak or not. See Fig-
ure 2(c) and (f).
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the same spectral density. As a result, we can consider p
and m as functions of the Hubbard model parameter U .
As U change the trajectory (p(U),m(U)) in the phase
space defines a Embedding of the Hubbard model into
the holographic model. Any line connecting a point in
fermi-liquid phase and a point in the gapped phase would
give an holographic model describing a Mott transition.
Therefore we may say that one embedding defines one
holographic Hubbard model. We will give a few simple
embeddings and give the evolution of the model along the
increasing U/t. Comparing with DMFT results for Hub-
bard model, two features agree: the appearance of ‘three
peaks’ and ‘transfer’ of the density of state(DOS) to the
shoulders. However, the way gap disappears is di↵erent
from each other after the critical strength of interaction,
where both DMFT and holography calculations can not
be trusted completely. Comparing with the experiment,
the vanadium oxides data seem to fit quite well to out
theory.
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In this paper we treat the fermion as a probe and do
not consider its back reaction and further mathematical
details of getting the spectral density is described in the
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It was pointed out [21] that the high frequency behav-
ior of the spectral function diverges like !2m so that the
sum of the degree of freedom over frequency is infinite
if m is positive. Therefore we need to take the negative
bulk mass only in the standard quantization. For the ease
of discussion we want to maintain the positivity of the
mass which can be done simply by going to the alterna-
tive quantization. Summarizing, we work in alternative
quantization with positive mass.

The Phases of holographic fermion : We study
the phases of holographic fermion as function of dipole
coupling p and the Dirac bulk mass m. Six phases
appear: these are Fermi Liquid(FL), Bad metal, Bad
Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
Semi-metal(SM) phases. The phase boundaries are fuzzy
since transitions are all smooth. FL, BM, BM’ and SM
are metalic phases, G is insulating and PG is between
bad-metal and insulator. The character of each phase
is illustrated in Figure 2. In this paper, we use the the
symmetrized version A(!) + A(�!) of the spectral den-
sity, to meet the general tendency in the literature. The
di↵erence between the bad metal and its primed phase is
whether they have shoulder or not. See Figure 2(d) and
(b). Similarly, the di↵erence between the Fermi-liquid
and semi-metal is also whether or not there is a shoul-
der. See Figure 2(a) and (c). The di↵erence of Bad metal
prime (BM’) and Pseudo gap is whether or not the cen-
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Metal prime(BM’), Pseudo-gap(PG), Gapped(G) and
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since transitions are all smooth. FL, BM, BM’ and SM
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SUPPLEMENTARY MATERIALS

1. Mathematical Detail

We introduce �± by
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after Fourier transformation. Then the equations of mo-
tion become [6],
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where u(r) =
q

gxx

�gtt
(! + qAt(r)). Here, the momen-

tum is along x direction. The corresponding equations
for y+, z� are obtained from the above by (At,!) !
(�At,�!).

At the boundary region(r ! 1), the geometry be-
comes AdS4 and the equations of motion (8) have ana-
lytic solution as

z+ = A1�1(r) +B1�2(r), y�= C1�3(r) +D1�4(r),
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with W = (! + q µ)2 � k
2. The asymptotic behaviors of

(9) are manifest if we notice 0F1 ! 1 in r ! 1. The
equation of motion produces the relations of coe�cients:
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2m+ 1
,
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, B2 =

iD2 (k � (! + q µ))
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.

Here, we made an abbreviation for mL with m, which we
will restore at the end.

The boundary term in Eq.(3) becomes

Sbd = y�z+ � y+z� = (A1D1 �A2D2)

+
P

± E±r
±2m�1 + E2r

�2
,

using the asymptotic behavior of wave functions �i.
Here, E± and E2 are functions of the coe�cients of �i.

A few remarks are in order. First, for m > 1/2, the
second term(E+) dominate but it can be cancelled by
counter terms [31], which do not contribute any finite
terms to the e↵ective action. Second, in the standard
quantization where we fix  + at the boundary, A’s are
the source terms. While in the alternative quantizaton
where we fix  � at the boundary, Di is taken to be the
source. Therefore, the retarded Green’s function in stan-
dard quantization, is given by

G = diag

✓
i
D1

A1
,�i

D2

A2

◆
⌘ diag(GR
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while that in alternative quantization is given by
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Since GR for m < 0 case, can be also obtained by
GR ! �1/GR, G̃R, the Green function for the alter-
native quantization for m > 0, is the same as that for
�m in the standard quantization:

G̃
R
±(!, k;m) = �1/GR

±(!, k;m) = G
R
⌥(!, k;�m). (10)

Introducing the ⇠± by

⇠+ = i
y�
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, and ⇠� = �i
z�
y+

, (11)

the equations of motion Eqs.(8) can be recast into two
independent equations for ⇠±:
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and the Green functions for m < 1/2 can be written as

G
R
±(!, k) = lim

r!1
r
2m
⇠±(r,!, k). (12)

2. Gap generation versus Appearance of
semi-metal phase

We first study the lower half of the phase diagram by
calculating its evolution along the line m = 0.1 with in-
creasing the dipole strength. The result is is drawn in
Figures 6 (a)-(h), where three di↵erent phases appear:

1. Fig. 6 (a,e) p = 1, Bad metal phase with broadened
peak with low height at fermi level,

2. Fig. 6 (b,f) p = 2, Psuedo-gap phase with incom-
plete depletion of DOS at fermi level.

3. Fig. 6 (c,g) p = 6, Gapped phase; Fig. 6 (d,h)
p = 8, Gapped phase with increased gap size.
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(a)

directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.

The quantum corrections to the 2D MC can be described by
the Hikami-Larkin-Nagaoka (HLN) model48 and is given analytically

by the equation Dsxx:sxx Bð Þ{sxx 0ð Þ~a
e2

ph½y 1
2
z

Bw

B

! "
{

ln
Bw

B

! "

$, where e is the electron charge, h is Planck’s constant, B

is the magnetic field, y is the digamma function, and a is a coefficient
whose value is determined by the nature of the corrections being WL

or WAL, or having contributions from both effects. Additionally, we
have Bw~

.
4el2

w in which the coherence length is characterized by
lw~

ffiffiffiffiffiffiffiffi
Dtw

p
, D is the diffusion coefficient and tw is the dephasing

time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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directions and apBerry’s phase is accumulated10,11,44. The destructive
interference due to pBerry’s phase leads to an enhancement of MC.
Applying an external magnetic field suppresses the destructive
interference, giving rise to a negative MC11,44,45. One interesting
question to ask is what if the magnetic impurities are incorporated
into the TI materials? Theoretical predictions suggested that when
doping with magnetic impurities, a competing WL effect will be
introduced and the localization behavior is a result of the
competition between WAL and WL27,29,46,47. For the slightly doped
sample (x 5 0.08, Fig. 2b), at T 5 1.9 K the sharp upward cusp
feature of WAL is gone and the magnetoconductance exhibits a
non-monotonic increase with the increase of magnetic field, where
a sharp downward cusp is developed at small magnetic fields. When
the temperature warms up to 3.1 K, the non-monotonic behavior
disappears and the WAL shows up again. Further increasing the
temperature to 3.7 K flattens the cusp feature, indicating that the
WAL is weakened and it can only survive in a small temperature
range. For the sample doped with x 5 0.10 (Fig. 2c), WAL is
completely suppressed and a non-monotonic behavior is presented
up to 3.1 K before a classical parabolic dependence of the magnetic
field (,B2) of the MC appears around 4 K (Supplementary materials
Fig. S1). Further increasing the doping concentration to x 5 0.14
(Fig. 2d), downward cusp feature is persistent up to 10 K, indicative
of a WL dominated behavior.
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time. The undoped samples show a WAL behavior (Fig. 2a) and can
be fitted well to the HLN model (Figs. 2e and 2f). The resultant a
value ranges from 20.65 to 20.75 (black squares in Fig. 2h) with
increasing temperatures, consistent with the typical values of WAL
originated from 2D surface states of TI11,49–51. And for the heavily
doped samples with x 5 0.14, the MC has an excellent fit to the HLN
model (Fig. 2g) with a values from 0.25 to 0.09 (blue triangles in
Fig. 2h) suggesting a typical WL behavior28,51–53. However, the fit
becomes challenging for the lightly (x 5 0.08, Fig. 2b) and inter-
mediate doping (x 5 0.10, Fig. 2c) samples, primarily because of the
competition between WAL and WL. Under these circumstances, the
weight ratios of competing terms of WAL and WL are difficult to be
extracted. Nevertheless, in low magnetic fields (20.3 T , B ,
0.3 T), the sample with intermediate doping yields avalues ranging
from 1.0 to 0.37 with increasing temperatures (T # 2.8 K) as
opposed to a large deviation from the HLN model at high fields
(for B . 0.3 T, supplementary Fig. S1)27.

It has been proposed that the opening of the surface energy gap
from the TRS breaking is responsible for this crossover from WAL to
WL27,28. Experimental observation in CrxBi2-xTe3 thin films showed
that with x 5 0.23, the surface states were completely suppressed.
Correspondingly the system became a dilute magnetic semi-
conductor (DMS)28. It is well known that the incorporation of mag-
netic impurities leads to the increased disorder in the films causing
localization in the electronic states, known as WL, which is strongly
related to field-induced magnetization29. In our scenario, with a
much lower Cr doping of x 5 0.14, the MC is completely governed
by the WL effect as opposed to the crossover behavior from WL to
unitary parabola with x 5 0.10. This suggests that a long-range

Figure 2 | Crossover of quantum corrections of magnetoconductance (MC) with increasing Cr content in CrxBi2-xTe3 thin films (x # 0.14).
(a) MC curves of pure Bi2Te3 thin films, showing the negative MC features of WAL. (b) MC curves of Cr0.08Bi1.92Te3 thin film, indicating a non-
monotonic behavior with sharp downward cusp at low temperatures (, 3.1 K) and re-presence of WAL at higher temperatures (3.1 and 3.7 K). (c) MC
curves of Cr0.10Bi1.90Te3 thin film, showing a crossover from downward cusp feature to parabolic dependence with increasing temperatures. (d) MC
curves of Cr 0.14Bi1.86Te3 thin film shows a WL dominated behavior. (e) HLN model fitting of MC curves with different Cr content at temperature of
1.9 K. (f) and (g) HLN model fitting of MC curves of pure Bi2Te3 and heavily doped Cr0.14Bi1.86Te3 thin films, showing that both WAL and WL can be
fitted well to the HLN model. (h) Pre-factor of a in HLN model of thin films with different Cr concentrations.
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(f)

FIG. 1. Evolution of MC curve as temperature increases.
(a), (c), (e) are theoretical results and (b), (d) and (f) are
experimental data of reference [21]. For ((a) and (b)) � = 0;
for ((c) and (d)) � = 0.1; for ((e) and (f)) � = 0.14. (d) is
drawn to compare the theory and data on top of each other.
We used �2 = 1717

(µm)2
, vF = 7.5⇥ 104m/s, q� = 7.12.

Magneto-conductance: Now we focus on the
magneto-conductance (MC) of non-ferromagnetic state.
To compare our results with the data for the non-ferro
magnetic material, we take µ = 0 so that M0 = 0. The
longitudinal conductivity in this limit is

�xx =
(F + G

2)(F �H
2)

F2 +H2G2
. (15)

And the MC is defined by

�� ⌘ �xx(H)� �xx(0). (16)

Fig.1 is the colloection of plots of MC as a function
of magnetic field and temperature. Left three figures
(a,c,e) are plots of theoretical results for three di↵erent
magnetic doping parameters � = 0, 0.1, 0.14 and the

right three figures (b,d,e) are corresponding experimen-
tal data. Since our results are analytic we can easily draw
3D graphs while experimental results are 2D curves for a
few discrete temperatures. From Fig.1, we can say that
the overall features of theoretical results are overwhelm-
ingly consistent with the experimental data apart from
the horns in Fig 1(b). Especially for the medium doping
case shown in Fig.1(c,d), MC changes nontrivially from
one temperature slice to the other and this has been the
region of hard-to-fit by any theory so far. Remarkably,
our theoretical result fits the details of data as one can
see in figure 1(d), where the theoretical curves are drawn
on top of the experimental data.
The non-trivial behavior of magneto-conductivity in

crossover regime can be understood by the competition
between the enhancement in conductivity by Witten ef-
fect and the suppression by external magnetic fields. The
interaction term gives Witten e↵ect: external magnetic
field generates extra charge carriers in the presence of q�
giving enhancement of conductivity. The result of the
competition is the sign change in the curvature of MC
curve near H = 0, where

�� ⇠ �
2(1� 4✓2/9)

r
2
0�

2
H

2 +O(H4). (17)

and ✓ = q��
2
�/r

2
0. It also explains why crossover from

WAL to WL appears only in relatively low but not very
low temperature region, because r0 ⇠ T for high tem-
perature and ✓ becomes small so that 1 � 2✓/3 cannot
change the sign. The fundamental reason for the appear-
ance of the Witten e↵ect is the Berry potential which in
turn is due to the spin-orbit interaction. That our theory
is good only for the strongly interacting systems suggests
that the electrons in this regime are strongly interacting.
In fact, as the gap increases, the density of states below
Fermi energy decreases and the condition µ/kT << 1
holds, providing the validity of hydrodynamic descrip-
tion.
On the other hand, for the very low or very high dop-

ing region, where conventional theory can explain the
data well, our results agree with data only qualitatively.
The most problematic feature is the horns of the Fig.
1(b), which is missing in our result Fig 1(a,e). Actu-
ally such sharp peak in MC curve is the hall-mark of
weak anti-localizaion(WAL) in usual (weakly interacting)
topological insulators. Here we suggest that the horns are
smoothed out by strong interaction: the suppression of
backward scattering is due to the relative Berry phase
of ⇡ between the localization amplitudes of a trajectory
and its time reversal pair [31]. Trajectories are fuzzy if
quasi-particles disappear by strong interaction, then so
is the cancellation argument. Finally we show our MC
formula as a function of magnetic field and the doping
parameter � as a 3D graph in FIG.2, from which we can
see the evolution of the magneto-conductivity along the
change of magnetic doping, which agrees with the data
of ref. [21]. Our result predict how the MC curve should
behave outside the experimented region.

4

FIG. 2. Evolution of MC curve from WAL to WL as one
increases doping parameter �.

Future directions: In this letter, we only examined
the Magneto-conductance in non-ferromagnetic phase,
That is, we need to investigate the regime for nonzero
charge parameter q. Other transport coe�cients like

thermal conductivities and Seeback coe�cients with or
without magnetic fields are also important aspects that
request future investigations. The graphene has even
number of Dirac cones, weak spin-orbit interaction and
di↵erent mechanism for WL/WAL. Because of such dif-
ferences, we need to find other interaction term in holo-
graphic model for graphene. It is also interesting to clas-
sify all possible pattern of interaction that provides the
fermion surface gap in the presence of strong e-e correla-
tion in our context.
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Spectral	data-ARPES		

•  It	comes	from	fundamental	fermion’s	two	point	function	.		

•  Mott	transition	is	first	candidate	to	understand		

•  DMFT	is	successful	to	an	extend	so	we	can	compare	
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spectral	function	Hubbard peak. Here kc = kF if kF exists, otherwise it is the momentum at which one of the

dispersion curve branch just touches the Fermi level ! = 0 which happens at m = 0.35. See

figure 5(b). For the gapped phase we choose R = 0.01.
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Figure 2. (a)-(f):Typical fermion phases. (a) FL with (p=0.5, m=0.45,kc = 1.65), (b) BM’ with shoulder
(p=2, m=0.4, kc = 2.30), (c) hM (p=6, m=0.45, kc = 2.48), (d) BM without shoulder (p=0.5, m=0.1,
kc = 1.20), (e) PG (p=2,m=0.1,kc = 2.89): notice the position of the ! = 0 compared with the BM’
phase in (b), (f) Gapped phase (p=6, m=0.15, kc = 5.68)
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Gapless

(a) Phase diagram

FL hM

GPG
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(b) Substructure in gapless phase

Figure 3. Phase diagram in (p, m) space. (a) Three phases which are gapless, psuedo-gap and Gapped
phases, appear and all transitions are smooth crossover. The gapless phase can be further divided into
four subregions: Fermi liquid like (FL), bad metals (BM), bad metal prime (BM’), half metal (hM).

The result of the detailed study of phases are summarized by the phase diagram given in

Figure 3. The dashed line along m = 0.5 represents the free fermion wall, the FL phase is

located at the upper-left corner and gapped phase is at the lower-right corner. All other phases

sit between the two and can be understood as e↵ects of proximity to, or competition of those

two. Notice also that the phase diagram is divided by the line of m ' 0.35: the lower half

– 9 –
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Diagnosis	

1.  Problem:	Spectral	function	gives	too	much	asymmetry.		
This	is	the	evidence	of	Pauli	principle	is	working	partially.		

2.  Reason:		Hole	degree	of	freedom	is	not	encoded.		
(Positive	and	Negative	energy	spectrum	have		the	same	charge)	

3.  Spectral	function	of	hole		=		Spectral	function	of	particle	(qà-q)	
	

Hubbard peak. Here kc = kF if kF exists, otherwise it is the momentum at which one of the

dispersion curve branch just touches the Fermi level ! = 0 which happens at m = 0.35. See

figure 5(b). For the gapped phase we choose R = 0.01.
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Figure 2. (a)-(f):Typical fermion phases. (a) FL with (p=0.5, m=0.45,kc = 1.65), (b) BM’ with shoulder
(p=2, m=0.4, kc = 2.30), (c) hM (p=6, m=0.45, kc = 2.48), (d) BM without shoulder (p=0.5, m=0.1,
kc = 1.20), (e) PG (p=2,m=0.1,kc = 2.89): notice the position of the ! = 0 compared with the BM’
phase in (b), (f) Gapped phase (p=6, m=0.15, kc = 5.68)
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Figure 3. Phase diagram in (p, m) space. (a) Three phases which are gapless, psuedo-gap and Gapped
phases, appear and all transitions are smooth crossover. The gapless phase can be further divided into
four subregions: Fermi liquid like (FL), bad metals (BM), bad metal prime (BM’), half metal (hM).

The result of the detailed study of phases are summarized by the phase diagram given in

Figure 3. The dashed line along m = 0.5 represents the free fermion wall, the FL phase is

located at the upper-left corner and gapped phase is at the lower-right corner. All other phases

sit between the two and can be understood as e↵ects of proximity to, or competition of those

two. Notice also that the phase diagram is divided by the line of m ' 0.35: the lower half
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How	to	add	hole	spectrum?		
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p	àp	Sign[q]	

Minimal	interaction	contains	qAt	

1.  We	change	Lagrangian	à	L[q]	+L[-q]	

2.  Consequence:		
equivalent	to	Spectral		function	is	Symmetrized.		
due	to	the	relation	

	 	G[w,	k,	q]	=-G*[-w,-k,-q]	
	

	A[w,	k,q]+A[w,k,-q]=A[w,	k,q]+A[-w,-k,q]	
	 		



Consequece	of	adding	hole	spectrum		
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Figure 2. (a)-(f):Typical fermion phases. (a) FL with (p=0.5, m=0.45,kc = 1.65), (b) BM’ with shoulder
(p=2, m=0.4, kc = 2.30), (c) hM (p=6, m=0.45, kc = 2.48), (d) BM without shoulder (p=0.5, m=0.1,
kc = 1.20), (e) PG (p=2,m=0.1,kc = 2.89): notice the position of the ! = 0 compared with the BM’
phase in (b), (f) Gapped phase (p=6, m=0.15, kc = 5.68)
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Figure 3. Phase diagram in (p, m) space. (a) Three phases which are gapless, psuedo-gap and Gapped
phases, appear and all transitions are smooth crossover. The gapless phase can be further divided into
four subregions: Fermi liquid like (FL), bad metals (BM), bad metal prime (BM’), half metal (hM).

the shoulder as we increase p
4. We call the line m = 0.5 ‘the free fermion wall’. One important

e↵ect of the dipole term is the creation of new band. See figure 4(b). As p increases, it push

down the new band below the Fermi level so that a gap is created and will be increased. The

third e↵ect of increasing p is to make the new band sharper which means it keep transferring the

spectral density from the central peak to the shoulder peak. This is similar to the e↵ect of U

in the DMFT calculation of Hubbard model. Now lowering m from 0.5, the spectral curves are

reconnected to avoid the ’level crossing’. Consequently, the density profile moves from Figure

4
Previously, the free fermion phase near the m = 0.5 was noticed by Leiden group [13] at p = 0 and here we

study it in the presence of the gap generating dipole term.

– 10 –

D Symmetrized spectral function

Pseudo-gap data in the context of High-Tc superconductor theory is usually presented using

symmetrized spectral function (SSF) [33–35]. We present the result it in figure 18 for those who

are already familiar to condensed matter literature.
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Figure 18. Symmetrized spectral functions for Bad metal prime and psuedo-gap.

D.1 PES data with symmetrized spectral function

As we mentioned in the main text, the photoemission data can be fit by the holographic theory

only when we symmetrize the spectral function in !: A(!, k) ! f(A(!, k) + A(�!, k)) fermion

distribution function f = 1/(1 + e
E/kT ). Although we do not have good reason to do it, the

result is fantastic. In figure 19 we record the result for possible use in the future.
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Figure 19. PES data with symmetrized spectral function: color red is for SrVO3 and (color blue) is for
CaVO3. The data for SrVO3 is from [28], and that for CaVO3 is from [29]. The parameters values we
used are (m, p, kc, µ) = (0.47, 2.2, 2.08, 1.732) for red line and (0.47, 2.05, 2.04, 1.732) for blue line.

D.2 Evolution along two embeddings

Here we give four embeddings corresponding to the four colored lines in Figure 20 and corre-

sponding spectral functions using the symmetrized embedding which was used in the early stage

of the work.
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 끈이론의 양자 홀로그래피 (exact) 

Figure 3: !e sketch of the AdS/CFT correspondence.

 D-brane 

(초대칭 등각대칭) 게이지이론,  AdS  중력이론 (초대칭)  
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1. 등각장론에서의 얽힘 엔트로피 
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2. 텐서그물망 :	(Multiscale	Entanglement	Renormalization	Ansatz)	
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Ryu  & Takayanagi (2006) 의 가정은 심오한 결과를 파생  
홀로그래픽 듀얼공간의 존재와   
        계에 높은 양자얽힘이 있다는 것은 동치임 
 
 
 
Raamsdonk :  classical (듀얼) 공간의 존재는 그 공간안에 정의된  물질의 엔탱글먼트에 의
존한다.  공간은 얽힘으로 바느질된 보자기와 같다.  
Entanglement first law à Linearized gravity equation. 
  

  Comment :  Entanglement and Holography 
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A B
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Figure 2: According to [9], the entanglement entropy S(A) between regions A and B in
the field theory is related to the area of the minimal surface Ã in the dual geometry such
that the boundary of Ã coincides with the boundary of A: S(A) = Area(Ã)/(4GN).
In the diagram, spatial geometry in the gravity picture is represented by the interior
of the ball, while the geometry on which the field theory lives is identified with the
boundary sphere.

gravity duality are built up by entangling degrees of freedom in the non-perturbative
description.

A disentangling experiment

Let us return to the simpler case of a single CFT on Sd. We would like to do a thought
experiment in which we start with the vacuum state of the field theory, dual to gravity
on pure global AdS spacetime, and see what happens to the dual geometry when we
gradually change the state to disentangle some of the degrees of freedom. To be specific,
we divide the sphere into two parts (e.g. hemispheres) which we label A and B.

Since the CFT is a local quantum field theory, there are specific degrees of freedom
associated with specific spatial regions, so we can decompose the Hilbert space H =
HA⊗HB. A simple quantitative measure of the entanglement between A and B is the
entanglement entropy [8], defined to be the von Neumann entropy

S(A) = −Tr(ρA log ρA)

of the density matrix for the subsystem A,

ρA = TrB(|Ψ⟩⟨Ψ|) .

This is typically a divergent quantity, but we can consider a field theory defined with
a cutoff (e.g. on a lattice), such that the entanglement entropy is finite. Now, starting
with the vacuum state, we can ask what happens to the dual spacetime when we
vary the quantum state in such a way that the entanglement entropy S(A) decreases.
Using the recent proposal of Ryu and Takayanagi [9], we can make a very precise
statement about what happens: the area of the minimal surface Ã in the dual spacetime
which separates the spherical boundary into its two components A and B decreases, in
direct proportionality to the decrease in entanglement entropy (see figure 2). Since the
surface Ã is a dividing surface between two regions of the dual space, we see that as

3

A B

A B

Figure 4: Effect on geometry of decreasing entanglement between holographic degrees
of freedom corresponding to A and B: area separating corresponding spatial regions
decreases while distance between points increases. The boundary geometry remains
fixed (despite appearances in the diagram).

larger
β

Figure 5: Spatial section of eternal black hole for two different temperatures (corre-
sponding to a horizontal line through the middle of the Penrose diagram of figure 1).
For low temperature (large β), where entanglement between the two CFTs is smaller,
the asymptotic regions are further apart and separated by a surface of smaller area.

Combining (3) and (2), we see that as the entanglement between degrees of freedom
in region A and region B (and therefore the mutual information I(C,D)) drops to
zero, the length of the shortest bulk path between the points xC and xD must go
to infinity (figure 3). Together with the result of the previous subsection, we obtain
the following picture. As the entanglement between two sets of degrees of freedom in
a nonperturbative description of quantum gravity drops to zero, the proper distance
between the corresponding spacetime regions goes to infinity, while the area of the
minimal surface separating the regions decreases to zero. Roughly speaking, the two
regions of spacetime pull apart and pinch off from each other, as shown in figure 4. As
seen in figure 5, these quantitative features can be seen explicitly in the example of
the eternal AdS black hole, where we can decrease the entanglement between the two
CFTs by increasing the inverse temperature parameter β.

Conclusions

We have seen that we can connect up spacetimes by entangling degrees of freedom and
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