NANOSCALE ENERGY CARRIER TRANSPORT IN RENEWABLE APPLICATIONS

: THERMOELECTRICS and LITHIUM ION BATTERIES

Jongwoo Lim

Assistant Professor Department of Chemistry, SNU

JWLIMgroup.com

Introduction to renewable energy applications

Li-ion Battery Energy Storage

Microbial Fuel Cell Electricity from Waste water

Thermoelectrics Electricity from Waste heat

Ion insertion kinetics Interfacial electron transfer Electron-phonon transport Microbial fuel cell Thermoelectrics Li-ion battery D. Cogswell et al., Nano Lett. 2014,11, 4890 H. Jeong, et al., Nano Lett, 2013, 13(6) 2864. Alphabetenergy.cor

JWLIMgroup.com

서울대학교 9/19/2018

Electron-phonon transport Thermoelectrics

Intro to Thermoelectrics

JWLIMgroup.com

Intro to Thermoelectrics

Silicon Thermoelectrics

Phonon Engineering in Nanostructures

JWLIMgroup.com

Phonon Engineering in Nanostructures

Silicon Nanowires

JWLIMgroup.com

Breaking the Casimir Limit

Li Shi. et al., **2012**

Probing Nanoscale Heat Transport

$$G_W = \frac{Q_s}{T_h - T_s}$$

- Qs = Heat flux through the nanowire
- Gw = Thermal Conductance of the nanowire
- Th = Temperature of the heating side
- Ts = Temperature of the sensing side

J. Lim* and K. Hippalgaonkar,* *et. al*, Nano Lett. 2012 J. Lee* and J. Lim* *et al.*,Nano Lett. 2015 J. Lim* and H. Wang* *et al*, ACS Nano. 2016 J.Lee*, WLee*,and J.Lim*, *et al.*, Nano Lett, 2016 K. Hippalgaonkar* and J. Lim.* *et al.*, *in prep*

Experimental Methods : Probing Nanoscale Heat Transport

JWLIMgroup.c

Roughness Parameters

- Roughness Parameters
 - rms (root-mean-square) : represents the amplitude of roughness
 - Correlation length (ζ) : related to mean distance between consecutive peaks. A statistical parameter that determines the decay of the autocovariance (exponential decay).

J. Lim, * and K. Hippalgaonkar,* et. al, Nano Lett. (2012), 12 2475

Impact of rms roughness

JWLIMgroup.com

Impact of correlation length (ξ)

JWLIMgroup.com

Spectral Dependence of Phonon Transport

JWLIMgroup.com

Roughness Impact on Thermal Conductivity

J. Lim, * and K. Hippalgaonkar,* et. al, Nano Lett. (2012), 12 2475

High temperature measurement

J. Lee*, W. Lee* and J. Lim. * et. al. Nano Lett (2016), 16. 4133

Ion insertion kinetics Li-ion battery

Market outlook of Li-battery

Lithium-battery market outlook

(Unit: \$billion)

Multi length-time scale

Source: D3BATT Center MIT/Stanford/Purdue

Battery electrochemistry

Electrochemical insertion reaction

Spatio-electrochemistry of battery

Spatio-dynamics at varying lengthscale

Zhang, *et al. Nat. Comm.* **7** (2015) 8333 Wang, *et al. Nat. Comm.* **6** (2014) 4570 Li, *et al. Nat. Mater.* **13** (2014) 1149

JWLIMgroup.com

Role of surface dynamics for ion insertion

X-ray spectro-microscopy

Spatially-resolved map of Li composition

LiFePO₄ battery particle synthesis

Microfluidic transmission battery

JWLIMgroup.com

서울대학교 9/19/2018

In situ movies of (de)lithiation

Lithiation(discharge), 2C 1 min (interpolated) 500 nm

Spatial resolution – 50nm Temporal resolution – 30s

Battery Failure with Crack

After cycling

Rate Dependent (de)Lithiation Heterogeneity

Lithiation Heterogeneity

Current density (insertion rate) quantification

J. Lim[#], Y. Li[#] et al., Science, 2016, 353, 566

JWLIMgroup.com

Exchange current density vs. Li composition

 $\mathbf{J}_0 = \mathbf{J} / f(\eta)$

Jo = Exchange current density = intrinsic rate property

J = Local current density = current /active area

$$\eta$$
 = Overpotential

J. Lim#, Y. Li# et al., Science, 2016, 353, 566

Origin of heterogeneity

Spatial and compositional dependence of kinetics determine the uniformity of lithiation

J. Lim#, Y. Li# et al., Science, 2016, 353, 566

Research summary

감사합니다

