To spread energy.

In the simplest terms, when the universe found areas of focused energy,
it spread that energy out. The classic example, as Kirsch had mentioned,
was the cup of hot coffee on the counter; it always cooled, dispersing its
heat to the other molecules in the room in accordance with the Second

Law of Thermodynamics.
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Infinitely Many Solutions
to the Black-Scholes PDE;
Physics Point of View
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Agenda (previous)

* A General Solution to Black-Scholes
Boundary Value Problem (Business)

e Derivation (Mathematics)

e Central Limit Theorem (Statistics)

CBS 2018-05-23

Agenda (Today)

* Appropriateness of Current Solution of Heat
Transfer/Diffusion Boundary Value Problem

 Appropriateness of Black-Scholes Formula

« Completeness of Hermite Polynomials

« Jumps in a Solution of Diffusion Equation

« Continuity of (Binary) Option Price

« Appropriateness of Feynman-Kac Formula

» Monte Carlo Simulation for Dynamical System
 Risk Neutral Option Pricing

* A Minimum Condition of Stochastic Calculus

CBS 2018-05-23
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The Second Law of Thermodynamics

% Dropping of stone:

A stone dropped from
some height can’t go to that
position until an external
force act on it.

*»» Cooled coffee:

A cup of coffee left
on your desk gradually
cools down. It never gets
hotter all by itself.




@_ 1 0%u
ot 2 0x2

Diffusion (aka Heat Transfer) Equation

» Consider a boundary value problem

2
g_;‘ — %% with u(0,¢) = A, (¢ > 0)

« The traditional/current solution is

WO (z,t) = A erfc (%) .




A Generalized Solution

- Kang, Kim, Choi, and Choi (KKCC, K2C?, 2018)

M
1 x x
U ERTIT R g p—— (—)¢(—
us\x, U\, 2m+1 5., 541 €2m+1
m=0 t(2m+1)/ \/Z \/%

where M is any non-negative integer, ¢1,(3, - are
any numbers, He,(x) is probabilists’ Hermite
polynomial of order n, and

b(z) = \/127 exp (-%:ﬁ) |

CBS 2018-05-23

Probabilists’ Hermite Polynomials

2 d" g2 d\"
H n =(—1 e 3 T2 = —_ - 1.
en(x) = (—1)"e e (:Jc dw)

Heg(x) =1

Hei(x) =x

Hey(z) = 2% — 1

Hes(x) = 2° — 3z

Hey(z) = z* — 62% +3

Hes(x) = x° — 102® + 152
Heg(z) = 25 — 152* + 4522 — 15

CBS 2018-05-23




K2C? Examples for the Generalized Solution

(1) Schrodinger Equation

(2) Drift-Diffusion in Positive-Negative
Junction Pixel Sensors

(3) Higuchi Equation for Drug Release

(4) Black-Scholes PDE for a Call Option

Some results will be presented near future by
M. Choi, H. Kang, and C. Kim.

CBS 2018-05-23 13
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Black-Scholes Environments

Black-Scholes (1973) Assumptions
Underlying x4 W/ Var (An (2 a1/21)) = v2At
European call option w(r,T) = [ar - K]
Strike K at expiry T

No transaction costs

« Can borrow any fraction of a security

* No penalties to short selling

« Constant short term interest rate -

Black-Scholes
Boundary Value Problem

*Black-Scholes PDE

1
we(x,t) = rw(z,t) — rewg(x,t) — §vzx2wm(a:,t)

« Boundary condition (Terminal condition)

%iTr%w(:c,t) =[z—K|", (z#K)




Black-Scholes Formula (1973)

- There exists the UNIQUE solution
wB(z,t) = 2,0(dy) — Ke "™ ®(dy)

1 [ 27
dy = {lnﬁ—l— 7“—|—U T}

K 2
2
g

{lmﬂ + -7“ L
« 1997 Nobel Prize in Economic Sciences

K| 2
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Choi-Choi Formula (2018)

M
’UJC(ZEt,t) — wBS(xbt) -+ ZClCl(xtat)
=0

with

o 1 1 x
Cl(l't,t) = Ke gb(dg)WHel (”U\/? In %)

for any MEZZO’ <:(<17<17”° ’CM)GRM

@ Against the law of one price
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When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When
When

Solution Check

order = 61, the Echeck value has 0.

order 62, the Echeck value has 0.

order 63, the Echeck value has 0. When order 82, the Echeck
order 64, the Echeck value has 0. When order 83, the Echeck
order 65, the Echeck value has 0. When order 84, the Echeck
order 66, the Echeck value has 0. When order 85, the Echeck
order 67, the Echeck value has 0. When order 86, the Echeck
order 68, the Echeck value has 0. When order 87, the Echeck
order = 69, the Echeck value has ©. When order = 88, the Echeck
order = 70, the Echeck value has 0. When order = 89, the Echeck
order 71, the Echeck value has 0. When order 90, the Echeck
order 72, the Echeck value has 0. When order 91, the Echeck
order 73, the Echeck value has 0. When order 92, the Echeck
order = 74, the Echeck value has 0. When order = 93, the Echeck
order = 75, the Echeck value has @. When order = 94, the Echeck
order = 76, the Echeck value has 0. When order = 95, the Echeck
order 77, the Echeck value has 0. When order 96, the Echeck
order = 78, the Echeck value has 0. When order = 97, the Echeck
order = 79, the Echeck value has 0. When order = 98, the Echeck
order = 80, the Echeck value has @. When order = 99, the Echeck
order 81, the Echeck value has 0. When order

CBS 2018-05-23
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has
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100, the Echeck value has 0.
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Completeness of Hermite Polynomials

«Hermite polynomials {He,(z); n=0,1,---}
form an orthogonal basis of *(r) of
functions satisfying /°° F(2)[2(x)dz < oo.

 An orthogonal basis for £2(r) Is complete.

CBS 2018-05-23 23

Completeness of {Heg ()}

CBS 2018-05-23 24
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The fact remains, however, that the B&S
paper is the decisive breakthrough in the
subject. Any history of option pricing—or of
financial economics generally—divides in
black-and-white terms into the pre-Black—
Scholes and post-Black—Scholes eras.

Louis Bachelier’'s Theory of Speculation

THE ORIGINS OF MODERN FINANCE
Translated and with Commentary by
Mark Davis and Alison Etheridge

CBS 2018-05-23
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Do we need the Black-Scholes
Partial Differential Equation?

No! Practically we need only
the Terminal Condition.

Moreover, we should reconsider

* Exotic Option Prices; Barrier options,
Lookback options, Asian options,

Spread options, ...,
» Stochastic Volatility; Heston model,

Chen model|, ...
*Interest-Rate Moddel; Vasicek model,
Hull-White model, Cox-Ingersoll-Ross model,
Longstaff-Schwartz model|, ... .

* Almost all the models discussed at 7he
Complete Guide to Option Pricing Formulas
by Haug, E.G. (2007)




FOURIER'S HEAT CONDUCTION EQUATION
from Narasimhan (1999)

TABLE 1. Chronology of Significant Contributions on Diffusion

Year Contribution
Fahrenheit 1724 mercury thermometer and standardized temperature scale
Abbé Nollet 1752 observation of osmosis across animal membrane
Bernoulli 1752 use of trigonometric series for solving differential equation
Black 1760 recognition of latent heat and specific heat
Crawford 1779 correlation between respiration of animals and their body heat
Lavoisier and Laplace 1783 first calorimeter; measurement of heat capacity, latent heat
Laplace 1789 formulation of Laplace operator
_Biot 1804 heat conduction among discontinuous bodies )
| Fourier 1807 partial differential equation for heat conduction in solids |
Fourier 1822 Théorie Analytique de la Chaleur
Ohm 1827 law governing current flow in electrical conductors
Dutrochet 1827 discovery of endosmosis and exosmosis
Green 1828 formal definition of a potential
Graham 1833 law governing diffusion of gases
Thomson 1842 similarities between equations of heat diffusion and electrostatics
Poiseuille 1846 experimental studies on water flow through capillaries
Graham 1850 experimental studies on diffusion in liquids
Fick 1855 Fourier’s model applied to diffusion in liquids
Darcy 1856 law governing flow of water in porous media

anra

4ial thaner liad ta flow in aranndwater hagineg
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Do we practically need the
Diffusion/Heat-Transfer
Partial Differential Equation?

No! Practically we need only
the Boundary Conditions.

CBS 2018-05-23




Speaking Boldly

CBS 2018-05-23 31

lJUllll.D wdad UL 11U J.II.IPUJ. Ld4llLC O chlll WilLll.
Thus the partial differential equation entered theoretical
physics as a handmaid, but has gradually become mistress. This

heaoan 1n tha nineteanth ceantiirv when the uwrave.thenrv nf licht

o

HR=A A"

Jlt( EL= JIRI KIg0) B2 9= AThE
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PUlllLb wdad UL 11U llllpUl Ld11LC LU UCSJ.II WilLll.
Thus the partial differential equation entered theoretical

physms as a handmald but has gradually become mistress. This

MAXWELL’S INFLUENCE
ON THE DEVELOPMENT
OF THE CONCEPTION OF PHYSICAL REALITY

Written for the centenary of Maxwell’s birth [1931]

CBS 2018-05-23 33

Newtonian Paradigm

* The first paradigm, which we shall refer to as the
Newtonian, was established in the seventeenth
century. According to this approach, a dynamical
system is understood by modeling it with a
differential equation and then solving that equation.

» We call this the Newtonian model without prejudice
as to what Newton’s world view may actually have
been. It might be argued that ‘Laplacian’ is a more
appropriate term.

* Rapp, PE., Schmah, TL, & Mees, Al (1999)
Models of knowing and the investigation of
dynamical systems, Physica D 132, pp. 133-149.

CBS 2018-05-23 34




Question about Newtonian Paradigm

https://www.researchgate.net/post/Are_differential_equations_the_proper_tool_to_describe_reality12

Question  Asked 6 years ago

Marek Wojciech Gutowski
4l 95.12 - Institute of Physics of the Polish Academy of Sciences

Are differential equations the proper tool to describe reality?

‘Newton introduced differential equations to physics, some 200 years ago. Later

Maxwell added his own set. We also have Navier-Stokes equation, and of course
- Schroedinger equation. All they were big steps in science, no doubts. But | feel

uneasy, when | see, for example in thermodynamics,

differentiation with respect to the {discrete!) number of particles. That's clear
abuse of a beautiful and well established mathematical concept - yet nobody
complains or even raises this question. Qur world seems discrete (look at STM

images if you don't like XIX-th cemurybahon‘s law), so perhaps we need some
other mathematical tool(s) 1o describe it correctly? Maybe graph theory?

CBS 2018-05-23 35

Countable Boundary Conditions

* Function f(z)
» Series representation (e.g., Taylor series)

- n - 1 n n
;anx = ;mf( )(0):1:

« To determine @0, o1, , &N, we need
f(xo)mf(xl)? e 7f(xM)

» To determine the coefficients Co,C1; -+ in KKCC formula,
we need countably infinite number of boundary conditions.

« But we have only finite number of boundary conditions. Thus,
countably infinite number of free coefficients for a solution of
the boundary value problem, which means the solution space
of the boundary value problem is of infinite dimension.

CBS 2018-05-23 36




A Guess

(Q) Do we practically need any
Partial Differential Equation?

(A) No! Practically we need only
the Boundary Conditions.

PDE would become an OLD Mistress

== Une Vieille
““““““ MAITRESSE

un film de Catherine BREILLAT

thelast
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Should we rely on the Newtonian
paradigm in the future?

Essentially, all models are
wyong, but some are useful.

However, the approXimate
nature of the model must
always be borne in mind.
- George Box

More science quotes at Today in Science History

todayinsci.com

CBS 2018-05-23 40




Peter Norvig
The Director of Research at Google Inc

’

All models are wrong, and
Increasingly you can

succeed without them.
{\,

/::f Peter Norvig
4

CBS 2018-05-23
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Hydra-zation

Clairaut's Theorem, Young's theorem, Schwarz's theorem
Diffusion/Heat Transfer Equation

0 (0u\ _ 0 (u\_ 0 (10°) _10° (ou
ot \ox) oOx\ot) 0x\20x2) 2022 \0ox

If u(z,t) is a solution to the PDE, so are

OP Ty (x,t)
0Pz 09t

) (p7 qc ZZO) .
The solutions are independent.
We can apply this result to any linear PDE.

Also, we can apply a modified version to any nonlinear PDE.

CBS 2018-05-23 43

Hydra-zation
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Completeness on State

OPT4q,

0Pt

=

Eall
[0kt

. ) P 7\ Dy
| 2% 2\ 3‘;\‘\,1‘44 [~ b 7 8

, @ KKCC solution
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Occam's Razor

* Principle of Parsimony
* Non-Separable Solution

2 KISS
Kw\a. 1t %iwf(’a. %Wia?
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Completeness on State & Time
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1. We need at least one solution
before Hydra-zation!

2. To circumvent the Newtonian
paradigm, we looking for a basis
for solutions of all (linear) PDEs.

Now, we proaose the following
method for the two purposes
above.

ODE and Eigen-equation

e Consider
y"(llf) - (>\1 + )\2) y'(m) + )\1)\2y($) = 0.

* Eigen-equation through the
Fundamental Theorem of Algebra (FTA)

)\2—(/\1+)\2)/\+)\1)\2
=A=AX)(A=X2)=0

« Solution for A1 # Ag
y(z) = C1eM7 + Cre*”




PDE and Eigen-equation 1

« Consider 1 1 1
U— —Uy — —U +

)\1 (91 )\191

* Eigen-equation:

1 1 1 1 1
1——M\N——0 No=11—-——)\ 1——6 | =0.
VR WS ( M )( )

« Solution: Linear combination of the PDE's
1 1

U= —Up, U= —1U

)\1 91

e Thus,

u(z,t) = C1(t)eM® + Cy(x)ert.

CBS 2018-05-23

PDE and Eigen-equation 2

e Consider 1 1
U — —uUy — —us = 0.

A1 04

» Eigen-equation:

1 1
1——AN——60=0.
)\1 (91

* (Q) Can we factor-out this eigen-equation?
Does the FTA for 2D polynomials exist?
(A) Yes!

CBS 2018-05-23




A Fundamental Theorem of Algebra,
Spectral Factorization, and Stability of
Two-Dimensional Systems (CBS, 2003)

Abstract—In his doctoral dissertation in 1797, Gauss proved the
fundamental theorem of algebra, which states that any one-dimen-
sional (1-D) polynomial of degree 12 with complex coefficients can
be factored into a product of n polynomials of degree 1. Since then,
it has been an open problem to factorize a two-dimensional (2-D)
polynomial into a product of basic polynomials. Particularly for the
last three decades, this problem has become more important in a
wide range of signal and image processing such as 2-D filter design
and 2-D wavelet analysis. In this paper, a fundamental theorem of
algebra for 2-D polynomials is presented. In applications such as
2-D signal and image processing, it is often necessary to find a 2-D
spectral factor from a given 2-D autocorrelation function. In this
paper, a 2-D spectral factorization method is presented through
cepstral analysis. In addition, some algorithms are proposed to fac-
torize a 2-D spectral factor finely. These are applied to deriving sta-
bility criteria of 2-D filters and nonseparable 2-D wavelets and to
solving partial difference equations and partial differential equa-
ﬁOHS. CBS 2018-05-23 53

PDE and Eigen-equation 3

« Consider a linear PDE

a+b
ZZCK@ baaa aftt) = O, Qp,0 = 1.

a=0 b=0

» Eigen-equation:

M N
> ) @A =0.
a=0 b=0

* The 2D FTA implies
3 = T[T (1- vt
1=0 5=0 a=0b=0
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PDE and Eigen-equation 4

- Let wqp(x,t) be asolution of PDE for (a,b) —th factor

04Uy p(x,t)
0%x Ot

= Vg bUa b (T, 1).

e Then,

u(z, t) = Y Cla,b)uqp(z,t).

a=0 b=0
« For example,

Ug b (2, 1) = exp (112 + vat)

with v, = nyg.

CBS 2018-05-23

To Apply this Method to Diffusion Equation

» Consider a diffusion equation du _ 19%u .

ot 2022
. Let v(xz,t) = ePlu(x,t).
e Then, ﬂ:ﬂ_'_ﬁ, U_x:%, Urs _ Uax
v u (¥ u v u
* Thus, for any B(#0)
1 1 0
V— =Vt — ——=Ugy = 0.
" 28

» The eigen-equation is

1 1
1—>A——0#*=0.
g 2B

CBS 2018-05-23




CBS 2018-05-23 57

Solution by Integration (?)

* The current solution w/ initial condition w(x,0) is

w(z, t) = /_o; w(z — w,0) %qﬁ (%) dw.

* (Some examples)

CBS 2018-05-23 58




Integrated Solution

. When u(z,t) is a solution of the diffusion
PDE, is /x u(z.t)d= another one?

— 00

 Possible when wu(—o0,t) =0.

« When we use an integrated solution, we
would rather make the system anticipative.
Otherwise, an identification problem arises. To

do it, we may use a Non-Symmetric Half
Plane (NSHP).

CBS 2018-05-23 59

Non-Symmetric Half Plane

A Q%MW"‘
:-t #g a‘;w

QQO]QQOO
L Qoao
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e 00 0000
K
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Including Jumps (Singularities)

s Let an= [ f (&) ke Hen (&) do
« Then «~
> et en (3) ¢ ()

n=0
converges to f(w) in L*-sense.
If /' is smooth or piecewise smooth,
then the series converges pointwisely.

In latter case, the series the series converges
© fEH+fE-)
D) y

when z is a point of discontinuity.
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Including Jumps (Singularities)

s Let an= [ f (&) b Hen (&) da
« Then «~
> waten () ¢ ()
converges to f<7z) in L?-sense.
If / is smooth or piecewise smooth,
then the series converges pointwisely.

In latter case, the series the series converges
0 flet)+f(z-)
9 ’

when z is a point of discontinuity.
(Q) Gibbs Phenomenon

CBS 2018-05-23 63

Gibbs Phenomenon
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Heat transfer analysis of transcritical
hydrocarbon fuel flow in a tube
partially filled with porous media

x10*
A7 | | ] L) L)
SO —— — Homogenous boundary filled porous media
.E Homogenous central filled porous media
M 6F - Gradient/boundary: 0 95-0 8 by r
>~ — — - - Gradient/boundary: 0 8-0 95 by r
%5 | — — — Gndient/central: 0 8-0 95 by r
= — - — - Gradient/central: 0 95-0 8 by r
i
l.%4 - -~ )
=
) 1
03 i
o a=-1
5] S=—
‘%z I f | :
=
H 1 A—ﬂ 1
=
(0]
E O 1 1 1 1 1
0 50 100 150 200 250 300

l2/d
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Partially filled with porous media

. 1, the length of headed section (meters)
« d tube diameter (meters)
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Binary (aka Digital) Option
= (Vi oo (20 N 3)

i

0.8

BS solufion

Value
o
(=]

0.4 4

$0 }u’h‘o-n.

0.2 1

D 0 50 100 150

u )

Figure 2.15 Payoff diagram for a binary call option. ( / tmav / /
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Completeness & Jumps

o] 5 ¢ | ap_I_qU

Qpa:(?qt

3%

AT

5 @ KKCC so\u’(w%-
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Feynman-Kac Formula

* PDE

+kv=— Z@ 2—l—g, on R x [0,T]

w(z,T) = f(z); (z€R?)

* Expectation

u(z,t) = E* (f (Wr—¢) exp (-/0 : k(Ws)dS))
T—t 6
+E* </0 g (t+0, W) exp (-/0 k(Ws)d9)>
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New Formula by Choi & Choi (2018)

» Let d=1, k(z) =0, g(z)=0.

* Let
1
¢
hy,(w,t) g Cmtm/2Hem( )

« Then, a generalized solution is

u<(x,t):/_o;u( —w,0) S, (¢, w)} (\ﬂ[)

 This equals to
ub(w,t) = B (u(w — Wy, 0)) B, (£, W) )

SE

= (ou(z,t) +ngtn}/2 ( (x — W, 0) Hep, (%))

CBS 2018-05-23 71

Coefficients & Initial Condition

. The coefficients ¢o,¢1,¢2,---  should satisfy

E° (Z Sy W;,0) He,, (%)) = u(z,0).

CBS 2018-05-23 72




An Example

ou 10%u
a = 5@, on R X [O,T]
u(z,0) =exp (—|z]); ze€ R

« Forany n € R,

W (z,t) = u(z,t) +m {exp (—x + %) o <x\;;> 1(—o0.0)(2)
/

+exp (:1: + %) o (—x\;; > 1(0,00)(33)}

where

Very Serious Problems

« Monte Carlo Simulations
of Diffusion/Heat Transfer Problem et al.

* Risk Neutral Option Pricing

« If observations do not come from an
exact Gauss distribution, the
expectation is not correct and can have
infinitely many values. Moreover, the
Gaussian assumption is impractical.
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How can we challenge
this problem in the future?

. Establish a new stochastic calculus
instead of either Ito calculus or Lévy
driven stochastic calculus.

* Wish for Kim’'s Calculus, Park’'s Calculus,
Lee's Calculus, ...

CBS 2018-05-23 76




SDE: ? (No C)

\

Black-Scholes PDE

™

cy oy

SDE: {wt} {wQ {va}

\\

Black-Scholes PDE

l

Black-Scholes formula




SDE: {w;} {w*}

{uwt}

L/

W

New-Type PD

E with (*
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Infinite Divisibility
A CDF F is infinitely divisible (InfDiv) if any n,
there exist IID RV X1, X2, -, X,,n Such that

e Bruno de Finetti (1929)
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Levy Process

* InfDiv CDF corresponds in a natural way to a Lévy Process.

* A Lévy process is a stochastic process with stationary
independent increments.

* Let {I,} be a Lévy process. Then, RV [ is InfDiv.

« If Fis InfDiv, a Lévy process {i;} is constructed from it. For
any interval [s, t] where t — s = p/q, we can define [, — [, to
have the same CDF as X, 1 + X2+ -+ X,,,- When

t =5 is irrational, we use a continuity argument.

Stable Distribution

- A CDF is stable if a linear combination of two
RVs with the CDF has the same CDF up to
location and scale parameters.

« An RV is stable if its CDF is stable.
* (aka) the Lévy alpha-stable distribution




Heavy-Tail Distribution
(x— Stable Distribution

4 i )
exp |—o |t (l +i[3%sign (r)log |r|> +i,ur] .
o= 1,
(p(r)=ﬁ . (7)
exp |—o% +|* (1 —iPsign(7)tan (g)) + ip:] .
a# 1.
\
Stable Distribution

 «a=2: Gaussian distribution
« a=1: Cauchy distribution
« a=0.5: Lévy distribution

»(0) = exp (—m + i,u@)

F(z) = \/g(x — )M exp <_2(:1:——Cfnw)>

e « < 2 = No variance

* a<1 = No mean

» Guess that a Gram-Charlier distribution does not belong to
the family of stable distributions, but is asymptotically similar
to a stable distribution with & near 2.
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Stable Paretian Distributions

« CLT: normed sum of a set of RVs, each with finite
variance, tends towards a Gaussian CDF as number of
RVs increases.

 Without the finite variance assumption, the limit may
be a stable distribution that is not Gaussian.

* Mandelbrot (1961, Econometrica) called them "stable
Paretian distributions”.

* Those maximally skewed in the positive direction with
1 < a < 2 are called "Pareto-Lévy distributions”,
which Mandelbrot regarded as better descriptions of
stock and commodity prices than normal
distributions.!
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Cootner (1964, p. 337)

—— = —weswvawsaw

should be considered explicitly, Mandelbrot, like Prime Minis-
ter Churchill before him, p}omises us not utopia but blood, sweat,
toil, and tears. If he is right, almost all of our statistical tools
are obsolete — least squares, spectral analysis, workable maxi-
mum-likelihood solutions, all our established sample theory,
~closed distribution functions, | Almost without exception, past |
if econometric work is meaningless, Surely, before consigning
| centuries of work to the ash pile, we should like to have some |
assurance that all our work is truly useless, If we have per-
| mitted ourselves to be fooled for as long as this into believing |
| that the Gaussian assumption is a workable one, is it not pos- |
w«gible that the Paretian revolution is similarly ,,i.llus.9ry;}3‘~'t&5‘y%

rate. it wanld coam r]oc;«q‘-\]:n,\& va Vs o
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Infinite Divisibility and Stable

« Stable CDF = InfDiv CDF
* InfDiv CDF doss NOT imply Stable CDF.
» Counterexample: Poisson distribution.
For each A>0 and each n, let X1, Xa,-- . X, < Poisson(\/n).

Then & 4 ,
ZXi ~ Poisson(\).

1=1
However, X; +---+ X,,_1 + 7X,, does not have the Poisson
distribution.
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Infinite Divisibility
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Self-Similarity@Bad Water Basin

B yation Sogrg 2 29235 L (Y, 2009, P96)
(a) (b)
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Koch Snowflake (1904)

) % %
» % %

Non-Differentiability

Self-Similarity

Infinite Divisibility




CaQCM\U\Q (2012, S+ew0Y":>
CHAPTER 2 DERIVATIVEVVS'

186
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The Second Law of Our Lives

If all else fails,

2aa

« However, there is

no w key

in our real lives. (CBS)

To be continued ...




Infinitely Many Solutions
to the Black-Scholes PDE;
Information Theory
Point of View




