
Basic of Neural Network
Tensorflow
Convolutional Neural Network,
Autoencoder,
Recurrent Neural Network,
Generative Adversarial Network

Introduction to Deep Learning and Its
Application to Hearing Research

Prof. Ahn Kang-hun

Department of Physics,
Chungnam National University

ahnkanghun@gmail.com

Colloquium at Dept. of Physics, Seoul National University, March 14, 2018

arXiv:1712.06340

Accepted in ICASSP 2018 Lecture Session

Training data

Clean korean speech : 200m
Noisy korean speech : 200m

30 epochs

Test data
Unseen noisy korean speech
(Different noise, speaker, sentence)

Result

Pre-trained with English (86epochs)

noisy enhanced noisy enhanced

54 Training data
4 Test data

noisy enhancedspeech + artillery sound

Data set

Types of Learning

Perceptron

Frank Rosenblatt
(1927-1971)

The architecture of neural network

Role of hidden layer

Example: AND operation

x1

x2

1

1
0

x1 x2 f
1 0 0
0 1 0
1 1 1

x1

x2

Desired output

Monolayer net

f 𝑓 = 𝑤11𝑥1+𝑤12𝑥2+b

f < 0

f > 0

Monolayer net is enough for AND operation.
One can find proper weight and bias.

x1

x2

1

1
0

XOR problem : Monolayer is not enough. Hidden layer is required.

x1 x2 f
1 0 0
0 1 0
1 1 1
0 0 1

x1

x2

f1

f2

g

f1=w11 x1 + w12 x2 +b1
f2= w21 x1 + w22 x2 +b2

g=w’11 f1 + w’12 f2 +b’

f1 > 0

f2>0

1

f2

1
0

f1

g>0

g<0

Training : Minimizing an object function (error)

Desired output Calculated output

activation

Weight matrix
bias

Gradient descent method

A simple linear equation for the error in terms of the error of next layer

Back propagation

Proof)

where

The equations of backpropagation

1. 𝛿𝐿 = 𝛻𝑎𝐶⨀𝜎′(𝑧𝐿)

4.
𝜕C

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙

3.
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

2. 𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1)⨀𝜎′(𝑧𝑙)

Hardamard product

6.

Tensorflow

Tensorflow is an open source software
developed by Google Brain, research
organization of Google. This software is
designed for configuring AI programs, so it is
suitable for making neural networks. Neural
networks can be represented as a graph as
shown in the figure. The circles are called
neurons, and passing data from one to
another can be represented by arrows. In this
graph, the neurons form a node with arrows,
and the circle itself contains some sort of
operation, including what we will introduce
later, Sigmoid or ReLU.

In tensorflow, the neural networks to be calculated are first constructed
as graphs. These graphs are just a representation of a plan to perform
some calculations, that is, a kind of code generation. When you perform
something called “Session”, data is input and the actual calculation is
performed. In this process, the resources of the computer can be used in
parallel. The arrows indicate the name tensorflow because it is
represented by a tensor (I am not 100% sure).

Let's create a simple tensorflow program that multiplies two numbers.

import tensorflow as tf
a=tf.placeholder(“float”)
b=tf.placeholder(“float”)
y=tf.multiply(a,b)

This code constitutes a graph of the tensorflow. a has no value in this
situation, instead, a will be ordered “to stay in place.” It is a “placeholder.”
b is the same. Multiplication with two placeholders is performed with the
multiply command of tf. You don’t need to separately specify the
placeholder of y. The following steps are preparing to execute the
calculation and running session.

sess=tf.Session()
print(sess.run(y, feed_dict={a:3,b:3}))

If we consider a graph as an architectural design, creating a session means
that you prepare construction workers and construction equipment. In the
above, ‘sess’ is the name of the session, which is prepared to do so. You
need a “sess.run” to start this. The last line gives inputting values and
printing outputs at the same time. Note that sess is not executed until

sess.run appears. And at the moment sess is run, all variables on the graph
are assigned proper values.

Ex) Single Neural Layer Network

import tensorflow as tf
import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x= tf.placeholder(“float”,[None,784])
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))

y=tf.nn.softmax(tf.matmul(x,W)+b)
y_=tf.placeholder(“float”,[None,10])

cross_entropy = - tf.reduce_sum(y_*tf.log(y))
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
sess=tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

This way, 100 pieces of data will be randomly sampled and used for training.
Here, “_xs” means images and “_ys” means their labels. Now run the

following code to check the test results

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_:mnist.test.labels}))

In the first line, tf.argmax(y, 1) finds the largest value of y along axis = 1.
The y matrix is None by 10 (= (None by 784) * (784 by 10)), where axis = 0
refers to the None side, row, while axis = 1 refers to the 10 side, column.
"None" commonly means that any number is possible, and here, it means
the number of input image data. Depending whether the maximum value of
y and y_ in the first line is the same or not, it returns TRUE or FALSE as a
shape of array. tf.cast will do this for [0,1,1,1,1,0,1,1 ... 1], by TRUE is 1 and
FALSE is 0. Then, the accuracy percentage is obtained by tf.reduce_mean,
which calculates the mean of the input array.

Ref) MNIST data
The MNIST data-set is composed by a set of black and white images
containing hand-written digits, containing more than 60.000 examples for
training a model, and 10.000 for testing it. The MNIST data-set can be
found at the MNIST database.

This data-set is ideal for most of the people who begin with pattern
recognition on real examples without having to spend time on data pre-
processing or formatting, two very important steps when dealing with
images but expensive in time.
The images are centered in 28×28 pixel frames by computing the mass
center and moving it into the center of the frame. The images are like the
ones shown here:

Also, the kind of learning required for this example is supervised learning;
the images are labeled with the digit they represent. This is the most
common form of Machine Learning.
To download easily the data, you can use the script input_data.py, obtained
from Google’s site but uploaded to the book’s github for your comodity.
Simply download the code input_data.py in the same work directory where
you are programming the neural network with TensorFlow. From your
application you only need to import and use in the following way:

import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

After executing these two instructions you will have the full training data-
set in mnist.train and the test data-set in mnist.test. Each element is
composed by an image, referenced as “xs”, and its corresponding label
“ys”, to make easier to express the processing code. Remember that all
data-sets, training and testing, contain “xs” and “ys”; also, the training
images are referenced in mnist.train.images and the training labels
in mnist.train.labels.

Convolutional Neural Network
(CNN)

The convolutional Neural Network(CNN) is an innovative neural network
introduced in 1998 by Yan LeCunn et al. This has led to dramatic
improvements in automatic image processing and now, it is widely used in
advanced machine learning models. Let’s look at how to implement CNN
through a simple example code.

https://www.youtube.com/watch?v=dGkDEHPSMq4

https://www.youtube.com/watch?v=dGkDEHPSMq4

• Reduce parameters to optimize
• Avoid overfitting

https://www.slideshare.net/zukun/p03-neural-networks-cvpr2012-deep-learning-methods-for-vision

import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow as tf

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

x_image = tf.reshape(x, [-1,28,28,1])

In the first two lines, we load the MNIST data through tensorflow. Then the
“placeholder” literally holds a “place” to make room for tensors. A “reshape”
changes the shape of x tensor into the shape in square brackets, where the
first -1 means that you did not specify what number to be input, like
“NONE”. The second and the third numbers indicate the size(28x28) of the
image data. And the last number is number of input data channel; here it
has to be 1 because MNIST data are gray scale images.

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],

padding='SAME')

Above codes are making functions for CNN. First two functions,
weight_variable and bias_variable, are make random matrix with given
shape. Conv2d is function for a convolution layer and max_pool_2x2 is
function for a pooling layer. Convolution layers perform matrix
multiplication among input data and weight variables. Then, in pooling
layer, features are extracted by taking the largest value in each filter region.
Basically, these processes are implemented by sharing all weight variables
and bias of each filter through all hidden perceptrons.

When the filters, convolution filters or pooling filters, pass through the
image, the degree that the filter moves each time is called “stride”. Padding
is attaching zero on boundary of input data to consider evenly about all
input values. In above codes, convolution layer stride is (1x1), pooling layer
stride is (2x2) and pooling filter size is (2x2). Both layers are performed with
zero padding. See the below figures to understand how filtering processes
work.

Pooling layer (Max pooling)

Zero padding

Above figure shows whole process that how data shapes change as
data passes through each layer. After whole process, finally, input
data was classified through a fully connected layer.

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow as tf
import matplotlib.pyplot as plt

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

x_image = tf.reshape(x, [-1,28,28,1])
print("x_image=", x_image)

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):

Full code

initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

맨 앞의 1 은 한놈씩 다룬다는 뜻, 가운데 둘은 1x1 stride 즉 위나 아래나
한칸씩 움직인다. 이렇게 하면 convolution 해도 결과이미지의 크기는 바뀌지
않겠지. 마지막은 1 은 흑백 을 의미하는 것임.

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],

padding='SAME')

#커널 사이즈 2x2 스트라이드 2x2 즉 위아래 두칸씩. 이러면 결과 이미지
크기가 반으로 1/2 x 1/2 만큼 줄겠지.

W_conv1 = weight_variable([5,5, 1, 32])
b_conv1 = bias_variable([32])

32개의 5x5 필터를 이용해서 인풋 개수 1개의 인풋 이미지로 32 개의
아웃풋 이미지를 만드는 필터.

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#convolution 하고 나서는 여전히 이미지 크기가 28x28 이다. 풀링을 하고
나서 14x14 로 이미지 크기가 준다. 이러한 이미지는 32개가 존재한다.

print(x_image.get_shape())

#이걸 하면 (?,28,28,1) 이라고 나오겠지. 28x28 이미지 하나.

print(h_conv1.get_shape())

#이걸 하면 (?,14,14,32) 라고 나오겠지. 32개의 14x14 이미지라는 뜻.

W_conv2 = weight_variable([5,5, 32, 64])
b_conv2 = bias_variable([64])

#32개의 이미지를 훑는 필터 64개. 그필터의 사이즈는 5x5.
여기서 32개의 이미지를 훑기 때문에 이미지가 사실은 3차원 구조14x14x32.

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#이걸 거치고 나면 64개의 14x14 이미지가 생긴다.
h_pool2 = max_pool_2x2(h_conv2)
#2x2 풀링을 통해 7x7 이미지로 변환. 64개.

print(h_conv2.get_shape()) #(?,14,14,64)
print(h_pool2.get_shape()) #(?,7,7,64)

W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])

Fully connected network 을 위한 준비

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #none 을 위한 축을 넣어서
계산 모양을 맞투어줌
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1,W_fc2)+b_fc2)

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(0.0003).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess = tf.Session()
sess.run(tf.global_variables_initializer())

Acc_train = []
Acc_test = []
acc_te = 0
for i in range(3001):

batch = mnist.train.next_batch(50)
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1]})

batch 는 [[데이터],[라벨]] 이렇게 돼있다. 그리고 데이터는 50x784 라벨은
50x10.

if i % 10 == 0:
acc_tr = sess.run(accuracy, feed_dict = {x:batch[0], y_:batch[1]})
acc_te = sess.run(accuracy, feed_dict={x: mnist.test.images, y_:

mnist.test.labels})
print("step %d, training accuracy %g"%(i, acc_tr),"test

accuracy %g"%acc_te)
Acc_train.append(acc_tr)
Acc_test.append(acc_te)

Auto Encoder

CONCEPT

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥) =
1

𝑛

𝑖

𝑛

𝑥𝑖 − 𝑓 𝑥𝑖
2

𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝐼𝑛𝑝𝑢𝑡 (𝑥)

𝐶𝑜𝑑𝑒

𝑂𝑢𝑡𝑝𝑢𝑡 (𝑓 𝑥)

Implementation

Application

 Denoising Auto Encoder (DAE)

𝐶𝑜𝑑𝑒

𝑂𝑢𝑡𝑝𝑢𝑡 (𝑓 𝑥)
𝑁𝑜𝑖𝑠𝑦

𝑖𝑛𝑝𝑢𝑡 (𝑥)
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑖𝑚𝑎𝑔𝑒𝑠 (𝑥)

Make the output of noisy data
similar to the original data

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥, 𝑥) =
1

𝑛

𝑖

𝑛

𝑥𝑖 − 𝑓 𝑥𝑖
2

Application

 Denoising Auto Encoder (DAE)

Application

 Variational Auto Encoder (VAE)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑜𝑠𝑠 = −𝐸𝑞 𝑧 𝑥 𝑙𝑛 𝑝 𝑥 𝑧 + 𝐷𝐾𝐿[𝑞(𝑧|𝑥)||𝑝 𝑧]

𝑧 ∶ 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐷𝐾𝐿: 𝐾𝑢𝑙𝑙𝑏𝑎𝑐𝑘 − 𝐿𝑒𝑖𝑏𝑙𝑒𝑟 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

Application

 Variational Auto Encoder (VAE)

With variation Generated celebrity-lookalike images

Feedfoward network Recurrent Neural Network

Feedfowrd networks
-mathematically they implement static input-output mapping
Multi-layer perception(MLP) can approximate arbitrary nonlinear functions with arbitrary precision
-Most popular supervised training algorithm: backpropagation algorithm
-Most (95%?) of neural network publication concern feedforward net
-have proven useful in many practical applications as pattern classifications

Recurrent network

Formal description of RNN

K input units

N internal units

L output units

n=1,2,3,… denotes the time

N X K N X N L X (N+K) N X L

Updates of internal units

Input internal output

The output

f= tanh or 1

Training of recurrent network

Backpropagation through time (BPTT) method

Unfold the recurrent network in time,
by stacking identical copies of RNN !

Teacher data

The error to be minimized
where

Then the algorithm is straightforward feedforward backpropagation algorithm.

error for the output units

error for internal units x_i (t)

error for the output units of earlier layer

error for the internal units of earlier times

Adjustment

TensorFlow Coding

아무개수나

5

Cell 과 X를 받아 output 으로

RNN 을 작동시키기

RNN 에서 나온 결과를 one-hot sequence 형태로 만들고
그것의 target Y와의 차이를 loss 로 나타낸다

Loss 를 계속 줄이도록 train 한다

Hi hello I was born in Korea. That is why I can speak ().

다음 중 괄호 안에 들어갈 말을 고르시오

1) English 2) Korean 3) Italian 4) hujlnbhdtyrghijlknjmb

지금 까지 보여준 RNN 은 기초적인 RNN 또는 Vanilla RNN 이라고 불리며 단기적인 기억만 가지고
있음.

Long and Short Term Memory

Juergen Schmidhuber

The LSTM does have the ability to remove or add information to the cell state

Cell 상태가 있어서 긴 시간의 기억을 가질 수 있게 된다.

f 값이 0 이 되면 과거 셀의 정보가 완전히 없어진다. 과거의 정보를 잊는 forget gate.

0 또는 1 이 되어서 정보를 살릴지 말지 결정

새로운 Cell 값 후보

This output will be based on our cell state, but will be a filtered version.
First, we run a sigmoid layer which decides what parts of the cell state we’re going to output.

이게 진짜 세익스피어가 쓴 희곡일까요?
아닐까요? ㅋㅋㅋ

Generative Adversarial Network

A Generative Adversarial Nets (GAN) consists of two models, a discriminator
and generator. The discriminator and generator compete with each other to
improve performance. A training sequence involves, the generator making
fake data from real data, and the discriminator classifying the fake and real
data. Therefore, we train the two networks by optimizing loss function,

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉 𝐷, 𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝔼𝑧~𝑝𝑧 𝑧 log(1 − 𝐷 𝐺 𝑧) ,

Where D and G are the discriminator and generator, respectively, x is real
data and z is latent variables, and D(x) is a probability that the input x is real
data. G(z) has the same dimension as real data. First, we maximize V(D,G) by
updating the parameters of the discriminator, and likewise minimize V(D,G)
for the generator. It has been proven that solving the above equation
produces equivalent fake and real data [1].
Proof)

V G,D =
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 𝑑𝑥 +
𝑧

𝑝𝑧 𝑧 log 1 − 𝐷 𝑔 𝑧 𝑑𝑧

=
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Where p_g(x)dx = p_z(z)dz 가 되도록 p_g 를 선택한다.

𝑚𝑎𝑥𝐷𝑉 𝐺, 𝐷 =
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷𝐺
∗(𝑥) + 𝑝𝑔 𝑥 log 1 − 𝐷𝐺

∗(𝑥) 𝑑𝑥 ,

where 𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

이건 D로 미분해서 알게됨.

𝑚𝑎𝑥𝐷𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷𝐺
∗(𝑥) + 𝔼𝑥~𝑝𝑔 log(1 − 𝐷𝐺

∗(𝑥))

= 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝑥~𝑝𝑔 log

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

= − log 2 + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔 𝑥
+ log(2) − log 2

+ 𝔼𝑥~𝑝𝑔 log
𝑝𝑔 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔 𝑥
+ log(2)

= − log 4 + 𝐾𝐿 𝑝𝑑𝑎𝑡𝑎 ∥
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
+ 𝐾𝐿 𝑝𝑔 ∥

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
= − log 4 + 2 ∙ 𝐽𝑆𝐷 𝑝𝑑𝑎𝑡𝑎 ∥ 𝑝𝑔

그래서 최적상태를 구한다면 만들어지는 데이터의 분포는 p_g 실재 존재하는 데이터의
분포 p_data 와 같아진다. p_g=p_data

𝐽𝑆𝐷 𝑝 𝑞 =
1

2
𝐾𝐿 𝑝 𝑀 +

1

2
𝐾𝐿 𝑞 𝑀 , 𝐾𝐿 𝑝 𝑞 =

𝑖

𝑝𝑖log(
𝑝𝑖
𝑞𝑖
) , 𝑀 =

1

2
(𝑝 + 𝑞)

However, a practical GAN training differs from this theoretical process, so fake
data vary widely from real data. Therefore, before programming a GAN, let’s
take a look at successful application first.

1) Least Square GAN
A GAN uses cross-entropy for the loss function V(D,G) with sigmoid function
on the output of the discriminator. In this case, since the real data and the
fake data are very easy to distinguish at the beginning of training, D has a
value close to 0, and the gradients become very small. Like the above GAN
proof, we can get coefficients a, b, and c through solving the following
optimization problems [2],

𝑚𝑖𝑛𝐷 𝑉𝐿𝑆𝐺𝐴𝑁 𝐷 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 (𝐷 𝑥 − 𝑏)2 +

1

2
𝔼𝑧~𝑝𝑧 𝑧 (𝐷 𝐺 𝑧 − 𝑎)2

𝑚𝑖𝑛𝐺 𝑉𝐿𝑆𝐺𝐴𝑁 𝐺 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 (𝐷 𝑥 − 𝑐)2 +

1

2
𝔼𝑧~𝑝𝑧 𝑧 (𝐷 𝐺 𝑧 − 𝑐)2 .

Practice 1)
Find the 𝑉𝐿𝑆𝐺𝐴𝑁 for both discriminator and generator.

𝑚𝑖𝑛𝐷 𝑉𝐿𝑆𝐺𝐴𝑁 𝐷 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 (𝐷 𝑥 − 𝑏)2 +

1

2
𝔼𝑧~𝑝𝑧 𝑧 (𝐷 𝐺 𝑧 − 𝑎)2

p_g(x)dx = p_z(z)dz

𝑚𝑖𝑛𝐺 𝑉𝐿𝑆𝐺𝐴𝑁 𝐺 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 (𝐷 𝑥 − 𝑐)2 +

1

2
𝔼𝑧~𝑝𝑧 𝑧 (𝐷 𝐺 𝑧 − 𝑐)2 .

Define

 𝑝𝑑 𝑥 𝐷 𝑥 − 𝑏 2 + 𝑝𝑔 𝑥 𝐷 𝑥 − 𝑏 2 𝑑𝑥

이것을 최소화 하는 것이 p_g =p_d 가 되게 하려면 위의 적분이
다음과 같으면 된다.

그러므로 b-c =1 b-a=2

2) Conditional GAN [3]

=
(𝑝𝑑 𝑥 + 𝑝𝑔 𝑥 − 2𝑝𝑔 𝑥)2

𝑝𝑑 𝑥 + 𝑝𝑔 𝑥
𝑑𝑥

Let’s consider that we successfully trained a GAN with the MNIST data set. A
trained generator makes perfect hand written digits, but we cannot choose any
particular digit. We can train the GAN with label information by conditioning
the input of the discriminator and generator. In the case of MNIST, the
discriminator gets images of digit and labels, and the generator gets latent
variables and labels for the images.

3) Deep Convolutional GAN

A Deep Convolutional GAN (DCGAN) [4], which has successfully trained many
data sets (especially image data), has the following structure.

Here, strided convolution means any convolution with a stride larger than 2.
Strided convolution downsizes input into output, and fractional-strided
convolution extends input into output. For a generator with a convolutional net,
fractional-strided convolution can be used to match the output size with real
data.

4) Fractional-strided convolution

We can use fractional-strided convolution as a built-in function in tensorflow.
tf.nn.conv2d_transpose()

arXiv:1712.06340

Training data
Clean english speech : 9h
Noisy english speech : 9h

86 epochs

Test data
Unseen noisy english speech
(Different noise, speaker, sentence)

C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investigating rnn-based speech
enhancement methods for noiserobust text-to-speech,” in 9th ISCA Speech Synthesis
Workshop, pp. 146–152

C. Veaux, J. Yamagishi, and S. King, “The voice bank corpus: Design, collection and data
analysis of a large regional accent speech database,” in Int. Conf. Oriental COCOSDA, held
jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-
COCOSDA/CASLRE). IEEE, 2013, pp. 1–4.

Data source :

Result

noisy enhanced
Subjective evalutation

19 listerners scored

Mean opinion score
1(bad quality) ~ 5(excellent quality)

Pascual, Santiago, Antonio Bonafonte, and Joan Serrà. "SEGAN: Speech Enhancement

Generative Adversarial Network." arXiv preprint arXiv:1703.09452 (2017).

Training data

Clean korean speech : 200m
Noisy korean speech : 200m

30 epochs

Test data
Unseen noisy korean speech
(Different noise, speaker, sentence)

Result

Pre-trained with English (86epochs)

noisy enhanced noisy enhanced

54 Training data
4 Test data

noisy enhancedspeech + artillery sound

Data set

Enhanced :
Other example

Enhanced :Noisy :

Thank you

