Introduction to Deep Learning and Its
Application to Hearing Research

Basic of Neural Network
Tensorflow
Convolutional Neural Network,

Autoencoder,
Recurrent Neural Network, Prof. Ahn Kang-hun

Generative Adversarial Network
Department of Physics,

Chungnam National University

Colloquium at Dept. of Physics, Seoul National University, March 14, 2018



arXiv:1712.06340
Accepted in ICASSP 2018 Lecture Session

LANGUAGE AND NOISE TRANSFER IN SPEECH ENHANCEMENT GENERATIVE
ADVERSARIAL NETWORK

Santiago Pascual', Maruchan Park?, Joan Serra®, Antonio Bonafonte', Kang-Hun Ahn®

! Universitat Politecnica de Catalunya, Barcelona, Spain
2 Chungnam National University, Daejeon, Republic of Korea
% Telefénica Research, Barcelona, Spain

ABSTRACT In previous work, we proposed an end-to-end speech
enhancement system [6] based on a generative adversarial
network [7] (GAN), namely speech enhancement genera-
tive adversarial network (SEGAN). SEGAN was proposed in
the pursuit of end-to-end speech processing, where signal is
enhanced at the raw waveform level, with a one-shot, non-
recursive structure. It showed the applicability of latest deep

Speech enhancement deep learning systems usually re-
quire large amounts of training data to operate in broad con-
ditions or real applications. This makes the adaptability of
those systems into new, low resource environments an impor-
tant topic. In this work, we present the results of adapting a

covnannh Aanhanasmaant canaeativen advarcaeinl saheoaels hee Baa



{© Training Korean speech & Result

Training data Test data

Pre-trained with English (86epochs) Unseen noisy korean speech
Clean korean speech : 200m (Different noise, speaker, sentence)

Noisy korean speech : 200m

30 epochs
Result
noisy enhanced noisy enhanced

b)) DEEP HEARING



O Erasing artillery sound

Data set
speech + artillery sound noisy enhanced
54 Training data 2 2
4 Test data <4 <:

<4
Us

N

<4
Us

N




Types of Learning

Supervised (inductive) learning

+ 'Training data includes desired outputs
Unsupervised learning

+ 'Training data does not include desired outputs
Semi-supervised learning

+ 'Training data includes a few desired outputs
Reinforcement learning

» Rewards from sequence of actions

13



Direction message tray

Axon terminals

Nucleus

Soma
(cell body)

i Myelin
Dendrites v Chaathe

Perceptron

Inputs Weights Sum Output
| | | |

YES/NO
decision

0 if ) wjz; < threshold
J

Frank Rosenblatt output =

(1927-1971) 1 if ij:nj > threshold
J



input layer /¢

The architecture of neural network

3 X
::}x”?/{a\'vl/ output layer

907 O AN =
e Wy




Role of hidden layer

|

Input Hidden Output
(2) (2 sigmoid) (1 sigmoid)



Example: AND operation Monolayer net is enough for AND operation.

. One can find proper weight and bias.
Desired output

X2
0
1
1

_\O_\><
oo™
—
/AR
_/
/7
/7
/7
/7

hN f<0
f>0 N

Q 1 R
X1 \
O f

S

f = wiix1+twyix, +b

Monolayer net



XOR problem : Monolayer is not enough. Hidden layer is required.

L7 f1>0 AN .0
N\
x1\ x2 | f XZé el al gz . J
, N\
(1)\ (1) )\ 8 1 7 o 1 . ©
1 ‘ 1 l 1 /// /\ /\
/s 7 N\
0o 0 1 T P SN
/// ’// \\\
// . //, O X1 O £1
\ 0l 7= 0
7 1 1
f2>0
O Oﬂ

Q f1=w11 x1 + w12 x2 +b1

>< \
f2= w21 x1 + w22 x2 +b?2
O L — g

0 g=w'11 f1 + w'12 f2 +b’
X2




Training : Minimizing an object function ( error)

Desired output Calculated output

layer 1 layer 2 layer 3

[ -1 l

C

Weight matrix

bias

activation



Gradient descent method

AC =~ VC - Av,

\4&

Av = —nVC



Back propagation

A simple linear equation for the error in terms of the error of next layer

Z wl+1 5l+1 ! )

Proof) st — oC
j

]
(9zj
oy e ta
o [+1 l
k 8zk 6zj
[+1
_ Z azk é‘H—l
— — &,
3zj
[+1 [+1
where l—H § :wl+1afj_|_bk+ § :,wl—H l)_|_b+
8zl+1
k +1 171
5 = Wi o (25)

J



The equations of backpropagation —
1. 6 =V,CO' (21
2. 8L = (WHDHT§H Y6 (7))
aCc

—_ sl
961 =0
J
aC
— l-1cl
4. —F =ay 9

0w,

Hardamard product



1. Input z: Set the corresponding activation a' for the input

layer.

2. Feedforward: Foreachl = 2,3,...,L compute

2 = wla"! + b and ! = o(2).

3. Output error §“: Compute the vector 6* = V,C ® o’ (z1).

4. Backpropagate the error: Foreachl =L —1,L —2,...,2

compute §' = (w67 @ o' (21).

Output: The gradient of the cost function is given by

oC 115l .. 19C _ <l

I
w.
0 ik j

o

6. Gradient descent: Foreach! = L,L — 1,...,2 update the

weights according to the rule w’ — w! — =+ 3. 5! (a®t1 )T’

m

and the biases according to the rule b — b — 30 mt



Tensorflow

edges(tensors)

Nodes(operations)

|
Graph

Session

000 -

cpul  cpu2 gpul

Devices

Tensorflow is an open source software
developed by Google Brain, research
organization of Google. This software s
designed for configuring Al programs, so it is
suitable for making neural networks. Neural
networks can be represented as a graph as
shown in the figure. The circles are called
neurons, and passing data from one to
another can be represented by arrows. In this
graph, the neurons form a node with arrows,
and the circle itself contains some sort of
operation, including what we will introduce
later, Sigmoid or RelU.



In tensorflow, the neural networks to be calculated are first constructed
as graphs. These graphs are just a representation of a plan to perform
some calculations, that is, a kind of code generation. When you perform
something called “Session”, data is input and the actual calculation is
performed. In this process, the resources of the computer can be used in
parallel. The arrows indicate the name tensorflow because it is
represented by a tensor (I am not 100% sure).

Let's create a simple tensorflow program that multiplies two numbers.

import tensorflow as tf
a=tf.placeholder(“float"”)
b=tf.placeholder(“float”)
y=tf.multiply(a,b)

This code constitutes a graph of the tensorflow. @ has no value in this
situation, instead, a will be ordered “to stay in place” It is a “placeholder.”
b is the same. Multiplication with two placeholders is performed with the
multiply command of tf. You don't need to separately specify the

placeholder of y. The following steps are preparing to execute the
calculation and running session.



sess=tf.Session()
print(sess.run(y, feed_dict={a:3,b:3}))

If we consider a graph as an architectural design, creating a session means
that you prepare construction workers and construction equipment. In the
above, ‘sess’ is the name of the session, which is prepared to do so. You
need a “sess.run” to start this. The last line gives inputting values and
printing outputs at the same time. Note that sess is not executed until
sess.run appears. And at the moment sess is run, all variables on the graph
are assigned proper values.

Ex) Single Neural Layer Network

import tensorflow as tf
import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x= tf.placeholder(“float”,[None,784])
W =tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))

y=tf.nn.softmax(tf.matmul(x,W) +b)
y_=tf.placeholder(“float”,[None,10])



cross_entropy = - tf.reduce_sum(y_*tf.log(y))
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
sess=tf.Session()

sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

This way, 100 pieces of data will be randomly sampled and used for training.
Here, “_xs"” means images and “_ys” means their labels. Now run the
following code to check the test results

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_:mnist.test.labels}))



In the first line, tf.argmax(y, 1) finds the largest value of y along axis = 1.
The y matrix is Mone by 10 (= (None by 784) * (784 by 10)), where axis = O
refers to the None side, row, while axis = 1 refers to the 10 side, column.
"None” commonly means that any number is possible, and here, it means
the number of input image data. Depending whether the maximum value of
yand y_in the first line is the same or not, it returns TRUE or FALSE as a
shape of array. tf.cast will do this for [0,1,1,1,1,0,1,1 ... 1], by TRUE is 1 and
FALSE is 0. Then, the accuracy percentage is obtained by tf.reduce_mean,
which calculates the mean of the input array.

Ref) MNIST data

The MNIST data-set is composed by a set of black and white images
containing hand-written digits, containing more than 60.000 examples for
training a model, and 10.000 for testing it. The MNIST data-set can be
found at the MNIST database.



This data-set is ideal for most of the people who begin with pattern
recognition on real examples without having to spend time on data pre-
processing or formatting, two very important steps when dealing with
images but expensive in time.

The images are centered in 28x28 pixel frames by computing the mass
center and moving it into the center of the frame. The images are like the
ones shown here:

S| O|H| L

Also, the kind of learning required for this example is supervised learning;
the images are labeled with the digit they represent. This is the most
common form of Machine Learning.

To download easily the data, you can use the script /nput data.py, obtained
from Google’s site but uploaded to the book’s github for your comodity.
Simply download the code /nput data.py in the same work directory where
you are programming the neural network with TensorFlow. From your
application you only need to import and use in the following way:




import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

After executing these two instructions you will have the full training data-
set in mnist.train and the test data-set in mnist test Each element is
composed by an image, referenced as “xs”, and its corresponding label
"ys", to make easier to express the processing code. Remember that all
data-sets, training and testing, contain “xs" and "ys"; also, the training
images are referenced in mnist.train.images and the training labels

in mnist.train.labels.



Convolutional Neural Network
(CNN)

https://www.youtube.com/watch?v=dGkDEHPSMqg4

3 [ bwe |
by
o o

IR
o
Vs Y o »y
o o
-] o
o o
o Q
o °
° °
. , o o
convolution + max pooling vec | o t

nonlinearity o
| |
convolution + pooling layers fully connected layers  Nx binary classification

The convolutional Neural Network(CNN) is an innovative neural network
introduced in 1998 by Yan LeCunn et al. This has led to dramatic
improvements in automatic image processing and now, it is widely used in
advanced machine learning models. Let's look at how to implement CNN
through a simple example code.


https://www.youtube.com/watch?v=dGkDEHPSMq4

- » Convolutional neural network

« Reduce parameters to optimize
 Avoid overfitting

FULLY CONNECTED NEURAL NET CONVOLUTIONAL NET

Example: 1000x1000 image
IM hidden units AL Learn multiple filters.
‘ 1012 parameters!!! o

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters

- Spatial correlation is local

- Better to put resources elsewhere! @

L) 64
Ranzato *

L)
Ranzato ;'

https://www.slideshare.net/zukun/p03-neural-networks-cvpr2012-deep-learning-methods-for-vision

D)) DEEP HEARING )

~omputational Hearing =Research Lab



import input_data
mnist = input_data.read_data_sets('MNIST_data’, one_hot=True)
import tensorflow as tf

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float"”, shape=[None, 10])

x_image = tf.reshape(x, [-1,28,28,1])

In the first two lines, we load the MNIST data through tensorflow. Then the
"placeholder” literally holds a “place” to make room for tensors. A “reshape’
changes the shape of x tensor into the shape in square brackets, where the
first -7 means that you did not specify what number to be input, like
"NONE” The second and the third numbers indicate the size(28x28) of the
image data. And the last number is number of input data channel; here it
has to be 7 because MNIST data are gray scale images.

1



def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME’)

Above codes are making functions for CNN. First two functions,
weight_variable and bias_variable, are make random matrix with given
shape. Conv2d is function for a convolution layer and max_pool_2x2 is
function for a pooling layer. Convolution layers perform matrix
multiplication among input data and weight variables. Then, in pooling
layer, features are extracted by taking the largest value in each filter region.
Basically, these processes are implemented by sharing all weight variables
and bias of each filter through all hidden perceptrons.



When the filters, convolution filters or pooling filters, pass through the
image, the degree that the filter moves each time is called “stride”. Padding
is attaching zero on boundary of input data to consider evenly about all
input values. In above codes, convolution layer stride is (1x1), pooling layer
stride is (2x2) and pooling filter size is (2x2). Both layers are performed with
zero padding. See the below figures to understand how filtering processes
work.

Convolution layer

Pooling layer ( Max pooling )
2 3

— T ‘o

g "l e
1

2

4
3
1

7 % 7 Input Volume 3 x 3 Output Volume

n

Y
= o (= -]
y
w
=

5> Y

Zero padding

0i0ioio e

Ml e [15] &

0

S w2

S |O | = | W
Sl= | WO




W_conv1 = weight_variable([5, 5, 1, 32)) \\x32
b_conv1 = bias_variable([32])

\\x 32

h_conv1 - tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 28x28 Pooling 14x14
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pooll, W_conv2) + b_conv2)

h_pool2 = max_pool 2x2(h_conv2 14 x 14 : Tx 7
et 5 U] 5

-
-
.

W_fc1 = weight_variable([7 * 7 1024]) ________
b_fc1 = bias_variable([1024]) ~— |

h_pool2_flat = tf.reshape(h_pool2, [-1, 7°764]) [croccococococococogoogocsp

h_fc1 - ff.nn.relu.matmul(h_pool2_flat, W_fc1) + b_fc1) ZASINA]
7 PR

keep_prob = tf.placeholder("float") [T cocococoddddddEILE
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W._fc2 - weight variable[[1024, 10]) -m

b_fc2 = bias_variable([10]) ) .
Classification !

y_conv=tf.nn.softmax(tf.matmul{h_fc1_drop, W_fc2) + b_fc2)

Above figure shows whole process that how data shapes change as
data passes through each layer. After whole process, finally, input
data was classified through a fully connected layer.



Full code

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data’, one_hot=True)
import tensorflow as tf

import matplotlib.pyplot as plt

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float"”, shape=[None, 10])

x_image = tf.reshape(x, [-1,28,28,1])
print("x_image=", x_image)

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):



initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")

# M 20| 1 2 ot CHEL= X, 7H=20 =2 1x1 stride & #[L+ Of2liLf
SHZEM 2 XIOICH O|ZE A 8} convolution S| = Z1H0|0|X|Q] A 7|= HFYX|
UK. OIX|EHE 1 2 =8 Z o|0|st= A Y.

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding="SAME")

#7129 AIO|= 2x2 AEEZIO|E 2x2 & 2(Ot2 57t o|2{™ Z1}f 0|0 K|
AZ|7FHIS 2 1/2 x 1/2 Bt E7X|.

W_conv1 = weight_variable([5,5, 1, 32])
b conv1 = bias_variable([32])

# 327H°| 5x5 BHE O|8dliA 21X 7+ 1712] @1 O|D[X|2 32 712
Ot = O|0[X| & RE= EH.



h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#convolution ot LA = TS| O|O|X| A2 7|7} 28x28 O|Ct. &2 ot
LM 14x14 2 O|O|X| A7|7} &=L}, 0|2{st 0|O|X|= 32717t =X Bt}

print(x_image.get_shape())

#0|Z ofH (2,28,28,1) 0|2t LI K|, 28x28 O|O|X| SfLt.
print(h_conv1.get_shape())

#0|4 ot (2,14,14,32) 2r0 Lt X 32702| 14x14 O|O|X|2t= 52

W_conv2 = weight_variable([5,5, 32, 64])
b_conv2 = bias_variable([64])

#3272 O|O|X[& &+ %H 6471. AEE Q2| AFO|=&= 5x5.
# 07| M 3270<2| O|O|X|& &7| W-Z0 O|O|X|7} Ar*'% 3Kl & 14x14x32.

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#0| 4 AHKX[1 LI 64742 14x14 O|O|X| 7} 4 7ICt,

h_pool2 = max_pool_2x2(h_conv2)

#2x2 =22 &0l 7x7 O[O|X[= HZt 6474,



print(h_conv2.get_shape()) #(?,14,14,64)
print(h_pool2.get_shape()) #(?,7,7,64)

W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])

# Fully connected network 2 9/t &H|

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #none & 2T = O
AL BES SEREOE
h_fc1 = tf.nn.relu(tf. matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = weight_variable([1024, 10])
b fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1,W_fc2)+b_fc2)

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

train_step = tf.train.AdamOptimizer(0.0003).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))



sess = tf.Session()
sess.run(tf.global_variables_initializer())

Acc_train = []
Acc_test = []
accte =0

for i in range(3001):
batch = mnist.train.next_batch(50)
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1]})
# batch = [[BIOI&E],[2H&]] OIF A =H QU 2|1 H|O|E &= 50x784 2fE2
50x10.
ifi %10 == 0:
acc_tr = sess.run(accuracy, feed_dict = {x:batch[0], y_:batch[1]})
acc_te = sess.run(accuracy, feed_dict={x: mnist.test.images, y :
mnist.test.labels})
print("step %d, training accuracy %g"%(i, acc_tr),"test
accuracy %g"“%acc_te)
Acc_train.append(acc_tr)
Acc_test.append(acc_te)



Auto Encoder



CONCEPT

Input (x) b v

Input size = Output size

/ N\
AN /
Code

J

Decoder

Output (f(x))

minimize C(x) = %Z (x; _f(xi))z




Implementation

tensorflow tf

numpy np

matplotlib.pyplot plt
| tensorflow.examples.tutorials.mnist input data
mnist = input data.read data sets("./mnist/data/", one hot= )

####### graph
learning rate = 0.01
training epoch = 20
batch size = 100

n_hidden = 256
n_input = 28%*28

X = tf.placeholder(tf.float32, [ » D_inputl)

W_gncode = tf.Variable(tf.random_normal([q_input, n_hidden]))
b_encode = tf.Variable(tf.random normal([n_hidden]))
encoder = tf.nn.sigmoid(

tf.add(tf.matmul (X, W_gncode), b_gncode))

W_decode = tf.Variable(tf.random_normal([q_hidden, n_input]))
b_decode tf.variable (tf.random normal ([n_inputl))

decoder = tf.nn.sigmoid(

tf.add(tf.matmul (encoder, W_decode), b_decode))
cost = tf.reduce_mean(tf.square(X - decoder))
optimizer = tf.train.RMSPropOptimizer(learning rate) .minimize (cost)

H4##4## Session

init = tf.global_variables_initializer(]
sess = tf.Session()

sess.run(init)

total_patch = int(mnist.train.num_examples/batch_size)

epoch range (training epoch) :
total cost = 0

i range(total_patch):
batch_xs, batch_ys = mnist.train.next_patch(batch_size)
s cosp_val = sess.run([optimizer, cost],
feed dict={X: batch xs})
total cost += cost_val

print ('Epoch:', '304d' % (epoch + 1),
'Aavg. cost =', '{:.4f}'.format(total cost / total batch))

print('training complete')

FHHHERE test
sample size = 10

samples = sess.run(decoder,
feed dict={X: mnist.test.images[:sample size]})
fig, ax = plt.subplots(2, sample size, figsize=(sample size, 2))



Application

® Denoising Auto Encoder (DAE)

Original
images (x)

Noisy

input (X)

Input

AT T T TTTTT]

[[TTTT]

|

Encoder

Output
A0
A
P
¥ /o
- Code - “ L\ /L]
N/

/ \ ] / 1
\< >/ L \\/ -
/ \ /\

N\ / — 7 \ L

P ~ _// v
F\ A —

Code ~_ [
\\\q_

Decoder

n
1
Training — minimize C(x,X) = - z (xl- —f (9?}-))2
7

Output ( f(X))

Make the output of noisy data
similar to the original data



Application

_ Den0|smg Auto Encoder (DAE)




Application

® \ariational Auto Encoder (VAE)

q(z[x) [+ z > px|z)

p(Z)

minimize Loss = —E;zx) [Inp(x|2)] + Dk, [q(z]x)||p(2)]

z : latent variable Dg;: Kullback — Leibler divergence



Application

® \ariational Auto Encoder (VAE)

jf Increased width

Glasses

With variation Generated celebrity-lookalike images



Feedfoward network Recurrent Neural Network

O

\

O
N/AN/
O O

Feedfowrd networks
-mathematically they implement static input-output mapping
Multi-layer perception(MLP) can approximate arbitrary nonlinear functions with arbitrary precision
-Most popular supervised training algorithm: backpropagation algorithm
-Most (95%?7?) of neural network publication concern feedforward net
-have proven useful in many practical applications as pattern classifications

Recurrent network

 all biological neural networks are recurrent

* mathematically, RNNs implement dynamical systems

* basic theoretical result: RNNs can approximate arbitrary (term needs some
qualification) dynamical systems with arbitrary precision ("universal
approximation property")

* several types of training algorithms are known, no clear winner

» theoretical and practical difficulties by and large have prevented practical
applications so far



Formal description of RNN
’l;if=—xi.+2wﬁf(x

continuous time

n=1,2,3,... denotes the time
[Spatially organized| .

K input units u(n) = (u,(n),...,u.(n))
N internal units X(n) = (x,(n),....xy(n))
L output units y(n)=(y,(n).....y, (n))’

— (W ) w = ( H,,J’”): Wﬁm - (]_.1';;{”) Whﬂi?frﬁ _ (w.f{ﬁ:{.'l'!.' )

Jy

N X K N X N L X ( N+K) N X L



K mput N internal units L output

units ' units
O

x(n+1) =f(W"u(n +1) + Wx(n) + W y(n))

A

Input internal output

The output
yin+D)=f" (W™ (n+1),x(n+1)).

f= tanh or 1



Training of recurrent network

Backpropagation through time (BPTT) method

Unfold the recurrent network in time,
by stacking identical copies of RNN !

Teacher data u(n) = (u, (n),...,u,(n)) , d(n)=(d, (n),...,d, (n)) n=1..T

The error to be minimized  E-= z ld(n)—y(n)| = 2 E(n) i
m=l,...J n=l,....T" where

yin+1)=f""(W™u(n+1).x(n+1)),
x(n+1)=f(W"a(n +1)+ Wx(n) + W y(n)),

Then the algorithm is straightforward feedforward backpropagation algorithm.



df (u)

0,(T)=(d(T)-y,(T))

error for the output units

du v
i -
0.(7T)= IE 0, (T)w;f‘f] af;?) v () error for internal units x_i (t)
=

umz (my STO7 for the output units of earlier layer
=%

0,(n)= I{n’j{}r) -y, (n))+ ia‘: (n + D“.‘;m} aj&iif)

Jf (u)
du

error for the internal units of earlier times

[‘jj (H) =

u=z(n)

N L
Yo, (n+Dw, + ¥ 8, (mw]
i=l J=l




Adjustment

T
new w, =w, + }’Etﬁj (m)x,(n-1) [usex ,(n-1)=0 for n=1j

n=1
.
new wi =w;: + }’E‘ﬁs (n)u,;(n)
n=1
[T
Eﬁi (n)u;(n),if j refers to input unit
new W;‘" = w;’” +yxqml
255 (n)x ,(n),if j refers to hidden unit
L. n=1

.
new W:;‘ﬂ = Wﬁm + }*Eﬁf (m)y;(n=1) [usey;(n-1)=0 for n=1]

n=1



Recurrent Neural Network

usually want to
predict a vector at
some time steps

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 14 8 Feb 2016



Recurrent Neural Network

We can process a sequence of vectors X by
applying a recurrence formula at every time step: y

he|=fw qht—la th
new state /| old state input vector at T
some time step
some function X

with parameters W

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 15 8 Feb 2016



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la $t)
|

h; = tanh(Wyphi—y + Wopay)

X Yt — Whyht

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 17 8 Feb 2016



target chars: bie“ Ul!' “l” “O??

Character-level 10 05 01 0.2
language model ouputlayer | 591 | Z0l |48 | |03
example 4.1 1.2 1.1 ol
L e
Vocabulary: | 0.3 1.0 01 |y nn|-0.3
hidden layer | .01 ——— 0.3 — -0.5 — 0.9
[h,e,I,o] 0.9 0.1 -0.3 0.7
Example trainin | | | s
mpile training : 0 0 0
sequence: input layer | 0 : ; ;
“hello” 0 g 0 g
input chars: “h “e” I 2

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 21 8 Feb 2016



Teach RNN ‘hihello’

® ® & 0O 0O ¢

S U S S
® © ® © © o



idx2char = ['h",
X data = [[©, 1, @, 2, 3

(:)x_nne_hut = [[[

L =2

lﬁl IEI IEF lH-I Eﬂ

N

y_data

1,

LT

Y

-

Iil

9,

3

L

L

GCDFCDI—‘

L3

4

b

S

L

& 0O P O 0 &
L

e

Manual data creation

¥

»

i

L

Y

L

2
%
0
0
0
1
1

¥

(lds B 25 353, 4]

ihell

~— ™~ M 3 < 3 I L

* % R % W ¥ ¥ O
w w N & =

+t

ihello



TensorFlow Coding

hidden_size = 5 # output from the LSTM
input _dim = 5 # one-hot size
batch _size = 1 # one sentence

sequence_length = 6 # [ihello| ==

JEP/ESN

y _data = [[1, @, 2 # ihello
X = tf.placeholdér(tf.float32,
[None, sequence_length, input _dim]) # X one-hot

Y = tf.placeholder(tf.int32, [None, sequence_length]) # Y Label




cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_size,

state is tuple=True) |\
initial state = cell.zero_state(batch_size, tf.float32) c

outputs, _states = tf.nn.dynamic_rnn(
cell, X, initial state=initial state, dtype=tf.float32)

\J

RNN £ 2tsA|7]7]

Cell 2f X O} output 2=



L
outputs, _states = tf.nn.dynamic_rnn(

cell, X, initial state=initial state, dtype=tf.float32)
weights = tf.ones([batch_size, sequence_length])

sequence_loss = tf.contrib.squSeq;gggggggg:19§§(
logits=outputs, targets=Y, weights=weights)
loss = tf.reduce _mean(sequence _loss)

train = tf.train.AdamOptimizer(learning rate=0.1).minimize(loss)

\

Loss & A&

ZO0| =2 train THC}

RNN O|A Lt2 Z1HE one-hot sequence HWEHE PHED
19| target Y2F2| XtO|E loss 2 LIEFHCE



with tf.Session() as sess:
sess.run(tf.gldbal_variables_initiglizgr())
for i in range(2000):
1, = sess.run([loss, trainl, feed_dict={X: x_one_hot, Y: y_data})
result = sess.run(prediction, feed_dict={X: x_one_hot})
print(i, "loss:", 1, "prediction: ", result, "true Y: ", y data)

# print char using dic
result_str = [idx2char[c] for ¢ in np.squeeze(result)]
print("\tPrediction str: ", ''.join(result_str))

@ loss: 1.55474 prediction: [[3 3 3 3 4 4]] true Y: [[1, @, 2, 3, 3, 4]] Prediction str: 1lllloo
1 loss: 1.55081 prediction: [[3 3 3 3 4 4]] true Y: [[1, ©, 2, 3, 3, 4]] Prediction str: 1llloo
2 loss: 1.54704 prediction: [[3 3 3 3 4 4]] true Y: [[1, @, 2, 3, 3, 4]] Prediction str: 1llloo
3 loss: 1.54342 prediction: [[3 3 3 3 4 4]] true Y: [[1, @, 2, 3, 3, 4]] Prediction str: 1lllloo

1998 loss: ©.75305 prediction: [[1 0 2 3 3 4]] true Y: [[1, ©, 2, 3, 3, 4]] Prediction str: ihello

1999 loss: ©.752973 prediction: [[1 @ 2 3 3 4]] true Y: [[1, ©, 2, 3, 3, 4]] Prediction str: ihello
—— T_




Chs & 2= 210 S0j& 25 AEAR

Hi hello | was born in Korea. That is why | can speak ( ).

1) English ) ltalian 4) hujinbhdtyrghijlknjmb

X|2 MR E0{Z= RNN £ 7|Z2A 90l RNN EE= Vanilla RNN 0|21 £2|0 thz| ™ol 7|0t 7HX|
ol o

@ @ C?D @ @?

T e T e < T = I e N =

é éé éé b




Long and Short Term Memory

D,

B L

6

A i

F 3
~,
(- EJ@
N |_|:I:r_||_{l:r_[ kanh |_:ii_[ i
vy

X:

The repeating module in an LSTM contains four interacting lavers.

78

DA VIREIRESS SIS

Juergen Schmidhuber



Cell JEIZF AAAN 21 AlZEe| 7|9 = 7tE &= U =l

= T A [

'y

The LSTM does have the ability to remove or add information to the cell state



f 40| 0 O] | u}A Aol FHRI} &Hs| GZEICt AL EEF U= forget gate.

fr=0(Ws-lhy_1,2¢] + by)




0= 10| £E|0jM HEHS H3X| X 2H

fjt = (T (IT’T! . [ht—lf .'f:f_: ‘|_ hj.)
Cy = tanh(We-[he 1, @] + be)

™

ME Cell 2 1




1
iy

vo

=—®

ft

e

It -
(.

= )

*’t—ffh'acr 1

i'.-f_ * E:'Tf



."H

— T (HE :h-'i:— 1, .’L‘t] | hﬂ)

h‘.‘l = (O * tanh [:(1;' }

!
St
Lo o

This output will be based on our cell state, but will be a filtered version.
First, we run a sigmoid layer which decides what parts of the cell state we're going to output.



t f' t tyntd-iafthatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
atfirst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

“Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 36 8 Feb 2016




FPANDARIS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

DUEE VINCENTIO:

Well, your wit is in the care of side and that.

O|A ZIm MoALO|7} 2 S| XYUNK?
o 7te? |3 a=

my fair nues begun ocut of the fact, to be conveyed,

Second Lord:
They would be ruled after this chamber, and

Whose noble souls I'1ll hawve the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:
I'll drink 1it.



Generative Adversarial Network

Real world - Sample
images
-i Discriminator
-1 Generator ¢ ~ Sample

Latent random variable

http//wwwslideshare.net/xavigiro/deep-learning -for-computer-
vision-generative-models-and -adversarial-training-upc-2016

Real

Fake

5507



A Generative Adversarial Nets (GAN) consists of two models, a discriminator
and generator. The discriminator and generator compete with each other to
improve performance. A training sequence involves, the generator making
fake data from real data, and the discriminator classifying the fake and real
data. Therefore, we train the two networks by optimizing loss function,

mingmaxp V(D,G) = Ey p,_,. co)llogD(xX)] + Ezp_ () llog(1 - D(G(2)))],

Where D and G are the discriminator and generator, respectively, x is real
data and z is latent variables, and D(x) is a probability that the input x is real
data. G(z) has the same dimension as real data. First, we maximize V(D,G) by
updating the parameters of the discriminator, and likewise minimize V(D,G)
for the generator. It has been proven that solving the above equation

produces equivalent fake and real data [1].
Proof)

VGD) = | Paacallog(DC)dr+ | po2)1og (1= D(9(2)) dz

X VA

= f Paata (%) 10g(D(x)) + pg(x) log(1 — D(x)) dx
Where p_g(x)dx = p_z(z)dz 7t E|=& p_g & MEDICL
maxpV (6,0) = | Paata () 108G (1)) + Py () log(1 = DG (1)) d,

" Pdaata (x)
Paata(X) + Py (x)

where D (x) =

O[Z1 D= O|Zsfl A A E.



maxpV(G,D) = Exp .. llogD¢(x)] + Ex~p, [log(1 — Dg (x))]
Pdata (x) ] [ pg (X)
=E,. lo + E, -
X~Pdata(*x) [ g Pdata (X) + pg(x) X~Pg gpdata(x) +pg(x)

= —108(2) + Ex~p g0 [log pdpé@i ;g o log(Z)] — log(2)
pg(x)

+ Eyep |1 + log(2
¥ Py [ ngdata(x) + pg(x) og( )]

+ +
= —log(4) + KL (pdata I pd“t“z Py ) + KL (pg I pd“taz Pg )

= —log(4) + 2 - JSD(Paata | Dg)
OB AHAEHZ TSICHH DHEO{X|= HIO|E{Q] EEE p_g AX| EX|Sl= O[]
2 p_data 2F #OITICE p_g=p_data

1 1 ; 1
ISD@llg) = 5 KLGPIM) +5KL(gIM),  KL(pllg) = ) plog(), M =5 +0)




However, a practical GAN training differs from this theoretical process, so fake
data vary widely from real data. Therefore, before programming a GAN, let’s
take a look at successful application first.

1) Least Square GAN

A GAN uses cross-entropy for the loss function V(D,G) with sigmoid function
on the output of the discriminator. In this case, since the real data and the
fake data are very easy to distinguish at the beginning of training, D has a
value close to 0, and the gradients become very small. Like the above GAN
proof, we can get coefficients a, b, and c through solving the following
optimization problems [2],



E;p,|(D(G(2)) — a)?]

Ezp,2)|(D(G(2)) = ©)?].

1
minp Visgan (D) = ) Ex~paqeao[(D(x) — b)?] +

1
ming Visgan(G) = > B~ paarat [(D(X) = €)%] +

NIl RPN -

Practice 1)
Find the V;¢;4n for both discriminator and generator.

1
x~paara(0) (D (X) — b)?] + 2 IEZ~pz(Z)[(D (G(Z)) - a)z]

minp Visgan (D) = > E
p_g(x)dx = p_z(z)dz

[ PG = 571 + Py - )]

_ bptlata($) T apy (I)
pdata(m) + Pg(ﬂ?]

D*(z)

1 1
ming Visean(6) = 5 Ex-pyqra[(DG) = 0] + 5 Bz, ([ (D(G(2)) — ©)7].

Define
20(G) = Eqnpy [(D* () — ¢)*] + Eanp, [(D*(z) — )]

_ (b— )pa() + (a — e)py(x) |2 (b— )pa() + (a — e)py () 2
e e e K R (G ey e
-/ (b = ) (pa(e) +po(@) — (0 — a)py(2))”
- Jx pa() + py(x)




o= 20| p_g =p_d 7t =|7| s}=H #|2| HEZ0|
H EICL.

dx

o ((Pa®) +pg () = 294 ())?
) PaC) + Py (@)

2|82 b-c =1 b-a=2

2) Conditional GAN [3]
Let's consider that we successfully trained a GAN with the MNIST data set. A
trained generator makes perfect hand written digits, but we cannot choose any
particular digit. We can train the GAN with label information by conditioning
the input of the discriminator and generator. In the case of MNIST, the
discriminator gets images of digit and labels, and the generator gets latent

variables and labels for the images. {— D{x.,,)[?] )
90000
\
000009 ©O000J)
(o QOOO@ )
0000




3) Deep Convolutional GAN

A Deep Convolutional GAN (DCGAN) [4], which has successfully trained many
data sets (especially image data), has the following structure.

Architecture guidelines for stable Deep Convolutional GANs
e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).
e Use batchnorm in both the generator and the discriminator.
s Remove fully connected hidden layers for deeper architectures.
s Use RelLU activation in generator for all layers except for the output, which uses Tanh.
e Use LeakyRel.U activation in the discriminator for all layers.

Here, strided convolution means any convolution with a stride larger than 2.
Strided convolution downsizes input into output, and fractional-strided
convolution extends input into output. For a generator with a convolutional net,
fractional-strided convolution can be used to match the output size with real
data.



4) Fractional-strided convolution

Sliding Kernel Direction

v

X0 |x1 x2 | x3 x4 |x5 x6 |x7  x8

00 |x1|x2|x3 x|x5 %6 |x7 |8

v 12
V2 —p» 1 2|3 |4

yt 1|2 ' |

, ¥3 gl ol
y2 | e———E1 N2 e L :

‘ y4 11234

y3 1l 2| 8| 4 ‘ =

y5 120 8 |4
y4 102|834
y5 A]20] 3| 4

1 2 3 4 Kemelofsize4

X0 ' x1|x2 x3 x4 x5 x6 x7|x8

X0 x1 x2 x3 x4 x5 |x6 | x7 x8 0 4
¥ | ————3pd
§ 0 ———F2p3 4
8
y1 mma 5 e
_—
3
— 0 | ———»1 12 3 4
y2 ‘ 913[4 §
3 | w234 g| |¥ LICEN &
he]
y4 11234 & ’ Ll
. v 102 (3 [4
1% 1123 |4 . e
AR i

We can use fractional-strided convolution as a built-in function in tensorflow.
tf.nn.conv2d_transpose()



arXiv:1712.06340

LANGUAGE AND NOISE TRANSFER IN SPEECH ENHANCEMENT GENERATIVE
ADVERSARIAL NETWORK

Santiago Pascual', Maruchan Park?, Joan Serra®, Antonio Bonafonte', Kang-Hun Ahn®

! Universitat Politecnica de Catalunya, Barcelona, Spain
2 Chungnam National University, Daejeon, Republic of Korea
% Telefénica Research, Barcelona, Spain

ABSTRACT

Speech enhancement deep learning systems usually re-
quire large amounts of training data to operate in broad con-
ditions or real applications. This makes the adaptability of
those systems into new, low resource environments an impor-

tant topic. In this work, we present the results of adapting a
nnnnn h Aanhanasamant canaeatinn advaroaeinl nahraels hae Boa

In previous work, we proposed an end-to-end speech
enhancement system [6] based on a generative adversarial
network [7] (GAN), namely speech enhancement genera-
tive adversarial network (SEGAN). SEGAN was proposed in
the pursuit of end-to-end speech processing, where signal is
enhanced at the raw waveform level, with a one-shot, non-
recursive structure. It showed the applicability of latest deep



{© Training English speech & Result

Training data Data source :

C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investigating rnn-based speech

Clean english speech : 9h _ _ _
. . enhancement methods for noiserobust text-to-speech,” in 9th ISCA Speech Synthesis
Noisy english speech : 9h Workshop, pp. 146-152
C. Veaux, J. Yamagishi, and S. King, “The voice bank corpus: Design, collection and data

analysis of a large regional accent speech database,” in Int. Conf. Oriental COCOSDA, held

8 6 e pOC h S jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-

COCOSDA/CASLRE). IEEE, 2013, pp. 1-4.
Test data

Unseen noisy english speech
(Different noise, speaker, sentence)

Result

: Subjective evalutation
noisy enhanced

19 listerners scored

Metric Noisy Wiener SEGAN

MOS 2.41 2.89 3.16

Mean opinion score
1(bad quality) ~ 5(excellent quality)

Pascual, Santiago, Antonio Bonafonte, and Joan Serra. "SEGAN: Speech Enhancement
Generative Adversarial Network." arXiv preprint arXiv:1703.09452 (2017).

$)) DEEP HEARING



{© Training Korean speech & Result

Training data Test data

Pre-trained with English (86epochs) Unseen noisy korean speech
Clean korean speech : 200m (Different noise, speaker, sentence)

Noisy korean speech : 200m

30 epochs
Result
noisy enhanced noisy enhanced

b)) DEEP HEARING



‘O Erasing artillery sound

.)) DEEP HEARING



O Erasing artillery sound

Data set
speech + artillery sound noisy enhanced
54 Training data 2 2
4 Test data <4 <:

<4
Us

N

<4
Us

N




—_—

Other example

Enhanced :

/

Noisy : “ Enhanced :



Thank you



