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Quantum Computing

Creating a new generation of computir

Google's quantum computer just accurately
simulated a molecule for the first time

It's a quantum world, we're just living in it.
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Alexander S. Holevo (Shannon Award)
Steklov Mathematical Institute, Russia

A. S. Holevo's scientific interests lie in the foundations of quantum theory, quantum statistics and quantum information theory.
In 1973 he obtained an upper bound for amount of classical information which can be extracted from ensemble of quantum
states by quantum measurements (this result is known as Holevo's theorem). He also developed the mathematical theory of
quantum communication channels, the noncommutative theory of statistical decisions, proved coding theorems in quantum
information theory and revealed the structure of quantum Markov semigroups and measurement processes.

w
Alexander S. Holevo graduated SldITL, Society for Industrial and Applied Mathematics  uywora
Thesis in 1975. Since 1986 A. S
honors, Alexander Holevo recei 0 Signin @ Help ™ View Cart

Russian Academy of Sciences (
and the Claude E. Shannon Awz Home Journals E-books Proceedings For Authors Subscriptions Interactive Features Jou

Home > Theory of Probability & Its Applications > Volume 60, Issue 3 > 10.1137/S0040585X97T98779X

Theory of Probability & Its Applications

Article Tools < Previous Article Volume 60, Issue 3

Add to my favorites Abstract | PDF
Download Citations

Track Citations Theory Probab. Appl., 60(3), 501-501. (1 page)

The Claude E. Shannon Award

M. V. Khatuntseva
DOI:10.1137/S0040585X97T98779X

Recommend & Share

Recommend to Library
Email to a friend

Alexander Semenovich Holevo is honored with the 2016 Claude E. Shannon Award for his
Kl Facebook

fundamental contributions to quantum information theory.
Twitter

|E| CiteULike © 2016, Society for Industrial and Applied Mathematics

p—  ae @ 2 as oA 8 a @ B A AN B A SR A DU AN RS S SN G B G S S DD S S &



N

WIKIPEDIA
The Free Encyclopedia

Main page

Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

nteraction
Help
About Wikipedia
Community portal
Recent changes
Contact page

lools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

’rint/export
Create a book
Download as PDF
Printable version

.anguages O

Naiiterh

Claude E. Shannon Award

From Wikipedia, the free encyclopedia

The Claude E. Shannon Award of the |IEEE Information Theory Society was instituted to honor consistent and profound
contributions to the field of Information Theory. Each Shannon Award winner is expected to present a Shannon Lecture at
the following IEEE International Symposium on Information Theory.l'! It is the most prestigious prize in Information Theory,
covering technical contributions at the intersection of mathematics, communication engineering, and theoretical computer
science.

It is named for Claude E. Shannon, who was also the first recipient.

Recipients |edit)

The following people have received the Claude E. Shannon Award:[?!

1972 - Claude E. Shannon
1974 - David S. Slepian
1976 — Robert M. Fano

1977 — Peter Elias

1978 — Mark Semenovich Pinsker
1979 - Jacob Wolfowitz

1981 — W. Wesley Peterson

1982 - Irving S. Reed

1983 — Robert G. Gallager

1985 —~ Solomon W. Golomb

1986 — William Lucas Root

1988 — James Massey

1990 - Thomas M. Cover

1991 — Andrew Viterbi
1993 - Elwyn Berlekamp
1994 — Aaron D. Wyner
1995 —- George David Forney
1996 — Imre Csiszar
1997 - Jacob Ziv

1998 - Neil Sloane

1999 - Tadao Kasami
2000 - Thomas Kailath
2001 - Jack Keil Wolf
2002 - Toby Berger
2003 - Lloyd R. Welch
2004 - Robert McEliece

e 2005 - Richard Blahut

e 2006 — Rudolf Ahlswede

e 2007 - Sergio Verdu

e 2008 - Robert M. Gray

e 2009 - Jorma Rissanen

e 2010 - Te Sun Han

e 2011 — Shlomo Shamai (Shitz)
« 2012 - Abbas El Gamall®]
« 2013 - Katalin Marton!4]

e 2014 - Janos Korner

e 2015 — Robert Calderbank
e 2016 — Alexander Holevo
e 2017 - David Tsel®!
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Motivation

Fundamentals of Quantum Information Theory

Applications

Single, Bi-partite, Tri-partite, ...




QUANTUM THEORY
in the view of a quantum information theorist



What is Quantum Mechanics?

Wave-Particle Duality

Light as Particles and Waves

Schrodinger Eq.?
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Uncertainty principle?

Superposition principle?
dead or alive
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Quantum Theory e e Stochastic Process

Prob[X|Y]
C* — algebra

Gelfand-Naimark-Segal (GNS)
construction

Bounded operators in Hilbert spaces

(Operator algebra) Information Theory
(Operator space theory)

Entropies H(X), I(X :Y), etc.

Representation

Matrix algebra



Quantum Theory s ——— Information Theory

Quantum systems, Dynamics, Statistics Coding H(X)
states: peM, M, := ,/\/l,rzl non-negative matrices Communication I(X : Y)
measurement: M € M, M > 0 Estimation, etc. JF (N), L(N|D)

*Martingale, Makovianity... etc.
*Convex Optimisation
(Semidefinite Programming)
*Compressive sensing (wavelet)

probabilites  p(M |p) = tr|M p|

Gleason’s theorem: Born rule

Matrix algebra ﬁ Prob [XlY]



Quantum Information Theory



Quantum Information Theory VS. Information Theory

PAB PAB
Qubit Bit
Entangled bit Secret bit
Quantum teleportation One-time pad
Entanglement distillation Secret key distillation
Separable states (LOCC) Separable correlations

(Public Communication)

Bound entanglement Bound information

Quantum Shannon Theory Shannon Theory

D Collins and S Popescu PRA 65 032321 (2002)



Unit of guantum information processing: QUantum BIT (QUBIT)

states: peM,

Qubit state : Any two-level system
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Story One: Information of Single Quantum Systems

Single quantum states cannot be copied






Quantum cloning
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oc-ph] 12 May 2017

THE CARELESS USE OF LANGUAGE IN QUANTUM INFORMATION

K. WIESNER

School of Mathematics
University of Bristol, Bristol, BS8 1TW, U.K.

An imperative aspect of modern science is that scientific institutions act for the benefit
of a common scientific enterprise, rather than for the personal gain of individuals within
them. This implies that science should not perpetuate existing or historical unequal social
orders. Some scientific terminology, though, gives a very different impression. I will give
two examples of terminology invented recently for the field of quantum information which

use language associated with subordination, slavery, and racial segregation.

My first example is the term ‘ancilla qubit’. In a quantum computational algorithm
the relevant information is stored in quantum states which, in analogy to ‘bits’ in classical

My second example of the use of language in quantum information is ‘quantum supremacy’
It is the name of a subfield in quantum information which has just begun to emerge. This
subfield is concerned with the search for tools to computationally simulate quantum sys-
tems that are too hard to be simulated with classical computational tools. The hope is to
gain insights into the behaviour of highly correlated quantum matter beyond what can be
achieved with classical computers. The English word ‘supremacy’ denotes the quality or



Learning from the history

1970 1980
| |

v

A. Holevo, Problems of Information Transmission (1974)
H. Yuen, R. Kenney, and M. Lax, IEEE Trans. Inf. Theory (1975)
C. Helstrom, Quantum Detection and Estimation Theory (1976)

Quantum Signal Processing

(Quantum State Discrimination/Estimation) v

W. K. Wootters and W. Zurek, “A single quantum cannot be cloned”
Nature 229 802 (1982)

Quantum Cryptography l

C. H. Bennett and G. Brassard, “Quantum Cryptography”, Bangalore (1984)

No-Cloning Theorem



PHYSICAL REVIEW A VOLUME 54, NUMBER 3 SEPTEMBER 1996

Quantum copying: Beyond the no-cloning theorem
JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 7 JULY 19¢
V. Buzek '~ and M. Hillery'

' Department of Physics and Astronomy, Hunter College of the City University of | Optimal C|°ning of pure States! tesung SIngle clones
695 Park Avenue, New York, New York 10021 M. Keyl" and R. F. Wemner®

* Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 842 28 Bratis! Institut fir Mathematische Physik, TU Braunschweig, Mendelssohnstrafe 3
(Received 5 February 1996) 38106 Braunschweig, Germany
We analyze the possibility of copying (that is, cloning) arbitrary states of a quantum-m (Received 4 August 1998; accepted for publication 7 April 1999)

system. We show that there exists a ‘‘universal quantum-copying machine™ (i.e., transfor
proximately copies quantum-mechanical states such that the quality of its output does not d¢
We also examine a machine which combines a unitary transformation and a selective measu
good copies of states in the neighborhood of a particular state. We discuss the problem of n

We consider quantum devices for tuming a finite number N of d-level quantum
systems in the same unknown pure state o into M >N systems of the same kind, in
an approximation of the M-fold tensor product of the state . In a previous paper it

output states. [S1050-2947(96)08408-9) was sh9\~:n that this pn_)blcm has a unique o;?limal .solution, when the c!uality of the
output is judged by arbitrary measurements, involving also the correlations between
PACS number(s): 03.65.Bz the clones. We show in this paper, that if the quality judgment is based solely on

measurements of single output clones, there is again a unique optimal cloning
device, which coincides with the one found previously. © 1999 American Insti-
tute of Physics. [S0022-2488(99)03707-X]

'OLUME 79, NUMBER 11 PHYSICAL REVIEW LETTERS 15 SEPTEMBER 1997

Optimal Quantum Cloning Machines

N. Gisin' and S. Massar’
' Group of Applied Physics, University of Geneva, 1211 Geneva, Swizerland

*Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University,
Tel-Ayiv AQQTR Tevnol

(Receive
Weo provent quatuns cloning nachines thet VOLUME 81, NUMBER 12 PHYSICAL REVIEW LETTERS 21 SEPTEMBER 1998

and we prove that the fidelity (quality) of these
measurement is discussed in detail. When the 1

cach clone tends towards the optimal fidelity thi Optimal Universal Quantum Cloning and State Estimation
More generally, quantum cloning machines are

classical information.  [S0031-9007(97)0391

Dagmar Bruss,! Artur Ekert,” and Chiara Macchiavello®
PACS numbers: 89.70.+¢, 03.65.-w 'ISI, Villa Gualino, Viale Settimio Severo 65, 10133 Torino, Italy
*Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

*Dipartimento di Fisica “A. Volta” and INFM, Via Bassi 6, 27100 Pavia, Italy
(Received 1 December 1997)

We derive a tight upper bound for the fidelity of a universal N — M qubit cloner, valid for any
M = N, where the output of the cloner is required to be supported on the symmetric subspace. Our
proof is based on the concatenation of two cloners and the connection between quantum cloning and
quantum state estimation. We generalize the operation of a quantum cloner to mixed and/or entangled
input qubits described by a density matrix supported on the symmetric subspace of the constituent
qubits. We also extend the validity of optimal state estimation methods to inputs of this kind.
[S0031-9007(98)07141-5)



m-to-n quantum cloning for qubit states i) Universal cloning: Gisin and Massar 1997
Werner 1999

m _) n i) Phase-covariant cloning: Bruss et al. (2000)

6 —6+e @+

quantum cloning

- Q) nm+n-+m m + 1
Fo = (Y|p"™|¢) = n(m + 2) m o (@)
)™ Fo > Fuy
(M) m + 1 [Fg) B FM] !
Fy = (@[p*[Y) = o pM)

i) Universal qubit cloning:

Bruss, Ekert, and Macchiavello (1998)
iif) Universal qudit cloning:

Keyl and Werner (1999)

iii) General case:

Bae and Acin (2007);

State estimation Chiribella and D'Ariano (2007)

Massar and Popescu 1995

6 —6+e+@+



Optimal Cloning of Quantum States

—— 1980

— W. K.Wootters and W. Zurek “No-Cloning Theorem” (1982)

—— 1990

One-to-Two Universal Symmetric Qubit Cloning (V Buzek and M Hillery 1996)
— General Universal Quantum Cloning (N Gisin and S Massar 1997)
Optimal Cloning (R. F. Werner 1999)

Optimal Qubit Cloning and State Estimation (D. Bruss, C. Macchiavello, A Ekert 1998,2000)

2000

(pplication to Quantum Key Distribution, Review on “Quantum Key Distribution” \

I E.g. Quantum Cryptography RMP (N Gisin, G Ribordy, WV Tittel, and H. Zbinden 2002)
The Security of Practical QKD, RMP (V. Scarani et al. 2009)

Review on Quantum Cloning, (V Scarani, S. Iblisdir, N Gisin and A Acin, RMP 2005)

Asymptotic quantum cloning is state estimation (] Bae and A Acin 2006)
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OPEN QUANTUM PROBLEMS
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OPEN QUANTUM PROBLEMS
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Asymptotic cloning is state estimation

Cite as: http://qig.itp.uni-hannover.de/qiproblems/22 &
Previous problem: Bell violation by tensoring

Next problem: SIC POVMs and Zauner's Conjecture

Contents [hide]
1 Problem

2 Background

3 Partial Results
4 Literature

Problem

Fix an arbitrary probability measure on the pure states of a 4-dimensional quantum system. Let F(N,M) be the optimal single copy fidelity for »
transformations, averaged with respect to the given probability measure and over all A clones.

On the other hand, let F(N’ oo) be the best mean fidelity achievable by measuring on ¥ input copies of the state, and repreparing a state ac
measured data. The problem is to decide whether one always gets ‘}im F(N,M) = F(N, ).
N —DCO

It is clear that the limit exists, because F(¥,M) is non-increasing in M. Moreover, the limit will be larger or equal than the right hand side, becal
with repreaparation is a particular cloning method. A weaker, but still interesting version of the problem is whether the above equation become
limit v 5 -

Solution

Bae and Acin solved the problem in [3], by arguing that the Choi operator of the optimal channel (for an arbitrary
distribution of states) producing k indistinguishable clones must be k-extendible. By the Bolzano-Weierstrass
theorem, this implies that, in finite dimensions, there exists a subsequence of optimal channels for increasing k&
that in the limit & — oo tends to an oo-extendible (and thus separable [4]) Choi matrix. Hence the channel must
be entanglement-breaking and therefore of the measure-and-prepare form. In particular, the monotone

¥

sequence of values (F'(N, k) ), must converge to F'(N, oc).



Asymptotic cloning is state estimation
Cite as: http://qig.itp.uni-hannover.de/qiproblems/22 &

Previous problem: Bell violation by tensoring

Next problem: SIC POVMs and Zauner's Conjecture

Contents [hide]
1 Problem

2 Background

3 Partial Results
4 Literature

week ending
PRL 97, 030402 (2006) PHYSICAL REVIEW LETTERS 21 JULY 2006

Asymptotic Quantum Cloning Is State Estimation

Joonwoo Bae and Antonio Acin

ICFO-Institut de Ciéncies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
(Received 15 March 2006; published 19 July 2006)

The impossibility of perfect cloning and state estimation are two fundamental results in quantum
mechanics. It has been conjectured that quantum cloning becomes equivalent to state estimation in the
asymptotic regime where the number of clones tends to infinity. We prove this conjecture using two known

results of quantum information theory: the monogamy of quantum correlations and the properties of
entanglement breaking channels.

DOI: 10.1103/PhysRevLett.97.030402 PACS numbers: 03.65.—w, 03.67.—a



m-to-n quantum cloning for qubit states i) Universal cloning: Gisin and Massar 1997
Werner 1999

m _) n i) Phase-covariant cloning: Bruss et al. (2000)
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quantum cloning

- Q) nm-+n-+m m + 1
Fo = (Y|p"™|¢) = n(m + 2) m o (@)
)™ Fo > Fuy
oo (oM gy — T [Fg) — FMJ
M= Wlp ) = (M)

i) Universal qubit cloning:

Bruss, Ekert, and Macchiavello (1998)
iif) Universal qudit cloning:

Keyl and Werner (1999)

iii) General case:

Bae and Acin (2007);

State estimation Chiribella and D'Ariano (2007)

Massar and Popescu 1995
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Modern Cryptography, Quantum Computer, and Quantum Cryptography at Cryptography Summer School

Optimal Cloning of Quantum States

—— 1980

— W. K.Wootters and W. Zurek “No-Cloning Theorem” (1982)

—— 1990

One-to-Two Universal Symmetric Qubit Cloning (V Buzek and M Hillery 1996)
— General Universal Quantum Cloning (N Gisin and S Massar 1997)
Optimal Cloning (R. F. Werner 1999)

Optimal Qubit Cloning and State Estimation (D. Bruss, C. Macchiavello, A Ekert 1998,2000)

2000

(pplication to Quantum Key Distribution, Review on “Quantum Key Distribution” \

I E.g. Quantum Cryptography RMP (N Gisin, G Ribordy, WV Tittel, and H. Zbinden 2002)
The Security of Practical QKD, RMP (V. Scarani et al. 2009)

Review on Quantum Cloning, (V Scarani, S. Iblisdir, N Gisin and A Acin, RMP 2005)

Asymptotic quantum cloning is state estimation (] Bae and A Acin 2006)
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Story Two: Two (Bipartite) Quantum Systems



Quantum Information Theory VS. Information Theory

PAB PAB
Qubit Bit
Entangled bit Secret bit
Quantum teleportation One-time pad
Entanglement distillation Secret key distillation
Separable states (LOCC) Separable correlations

(Public Communication)

Bound entanglement Bound information

Quantum Shannon Theory Shannon Theory

D Collins and S Popescu PRA 65 032321 (2002)



Entanglement is a resource

General resource for quantum information processing,
including Quantum Computation and Secure Quantum Communication

eek ending
VOLUME 92, NUMBER 21 PHYSICAL REVIEW LETTERS 2\gMAY21004

Entanglement as a Precondition for Secure Quantum Key Distribution

Marcos Curty,’ Maciej Lewenstein,” and Norbert Liitkenhaus'

'Quantum Information Theory Group, Institut fiir Theoretische Physik, Universitit Erlangen-Niirnberg, 91058 Erlangen, Germany

*Institut fiir Theoretische Physik, Universitat Hannover, 30167 Hannover, Germany
(Received 21 July 2003; published 27 May 2004)

— 'y precondition for an unconditionally secure quantum key distribu-
tion is that both sender and receiver can use the available measurement results to

receiver can use the available measurement results to prove the Eesenoe of
entanglement in a quantum state that is effectively distributed between them. One can thus systemati-

cally search for entanglement using the class of entanglement witness operators that can be constructed

eek ending
PRL 94, 020501 (2005) PHYSICAL REVIEW LETTERS 21 JANUARY 3005

Quantum Correlations and Secret Bits

Antonio Acin’ and Nicolas Gisin®

'ICFO-Institut de Ciéncies Fotoniques, Jordi Girona 29, Edifici Nexus 11, E-08034 Barcelona, Spain

*GAP-Optigue, University of Geneva, 20, Rue de I'Ecole de Médecine, CH-1211 Geneva 4, Switzerland
(Received 21 October 2003; published 18 January 2005)

It is shown that (i) all entangled states can be mapped by single-cor

, >d b le-copy measurements into probabilit
distributions containing reo_olan and (i1) if a probability distribution obtained from a quantum
state contains secret correlations, then this state has to be entangled These results prove the existence of a

bomnse suswsr ssssesmads s hofdesssmss

Tl ﬂ'\f' P ITIRL II T ﬂf\m‘ﬂhl\ﬂl‘ |ﬂ 0'\n Ll o aTaTrT. TN l‘\‘. nmnnm’ TN “ﬂl ﬂlﬂl‘\



What is entanglement? Quantum correlations that do not have classical counterpart

Often, it’s introduced as

(1 2
SEPaprable states P12 = Zpi ) & ,0( ) ENTangled states P12 * sz' % 02 ,0( )

Operator-Algebraic,

Entangled states are characterised by positive (P) but not completely positive (CP) maps
Def. A>0iff Vp >0, Alp] >0

Pbutnot CPmaps Sy = {A: B(H) - B(H) || A>0, I®A %0}
ENT={pe S(HRH) || (IRA)[p] 20, A€ Sy}

Operationally, information-theoretically,

Entangled states are those quantum states that cannot be prepared by LOCC



1st, in the view of quantum state preparation

Often, it’s introduced as

1
SEPaprable states P12 = Zpipg ) X p; ENTangled states P12 G Zpip?(;

What can we learn? Separable states form a convex set




2nd, in the view from Operator Algebra

Operator-Algebraic,

Entangled states are characterised by positive (P) but not completely positive (CP) maps
Def. A > 0 iif Vp, Alp] >0

Pbutnot CPmaps Sy = {A: B(H) - B(H) || A>0, I®A*0}
ENT={peS(HRH) || (IRA)[p] 20, A€ Sy}

What can we learn? Separation of ENT from SEP: Entanglement Witnesses (EWs)
|44
Wopt

W is an entanglement witness if and only if

trfeW] >0 V oc SEP
tr[pW] < 0 dp € ENT

ﬂW that can detect all entangled states



3rd, in the view from operational meaning

Operationally, information-theoretically,

Entangled states are those quantum states that cannot be prepared by LOCC

What can we learn? i) Power of entangled states, ii) Entangled, fully ordered

Alice

| ocal Operations (LO)

A
p(A) oM @ plP)

Classical Communication (CC)

Zp A) R p(B)

Separable

Entangled

Bob

Local Operations (LO)



Separable state

From Wikipedia, the free encyclopedia

In quantum mechanics, separable quantum states are states without quantum entanglement.

Contents [hide]

1 Separable pure states

2 Separability for mixed states

3 Extending to the multipartite case

4 Separability criterion

5 Characterization via algebraic geometry
6 Testing for separability

7 See also

8 References

9 External links

Characterization via algebraic geometry (edi)

Quantum mechanics may be modelled on a projective Hilbert space, and the categorical product of two such spaces is tr
state is separable if and only if it lies in the image of the Segre embedding. Jon Magne Leinaas, Jan Myrheim and Eirik C
entanglement"®! describe the problem and study the geometry of the separable states as a subset of the general state m
subset of states holding Peres-Horodecki criterion. In this paper, Leinaas et al. also give a numerical approach to test for

Testing for separability [edit;

Since separability testing in a general case is an NP-hard. 112} problem, in their paper,'®! Leinaas et al. offer a numerical ¢
‘state towards the target state to be tested, checking if the target state can indeed be reached. An implementation of the
testing) is brought in the "StateSeparator” web-app &




General Picture of Entanglement Detection

guantum state verification

State g Quantum State
Preparation Tomography
| don’t know the state but, | know the state and, (though|NP-Hard)
want to know if it’s entangled can apply Positive Maps, SDP
v v

Entangled or
Separable?

Entanglement Detection >
More detectors




Main Challenge in Quantum Information Verification: # of Measurement

N d—dimensional systems — d" detectors

Vol 4381 December 2005/doi:10.1038/nature04279 nature

LETTERS

Scalable multiparticle entanglement of trapped ions

H. Haffner'”, W. Hansel', C. F. Roos'”, J. Benhelm'”, D. Chek-al-kar', M. Chwalla’, T. Kérber'~, U. D. Rapol'~,

M. Riebe’, P. O. Schmidt’, C. Becher't, O. Giihne®*, W. Diir*® & R. Blatt'*

The generation, manipulation and fundamental understanding of
entanglement lies at the very heart of quantum mechanics.
Entangled particles are non-interacting but are described by a
common wavefunction; consequently, individual particles are not
independent of each other and their quantum properties are
inextricably interwoven'~. The intriguing features of entangle-
ment become particularly evident if the particles can be individu-
ally controlled and physically separated. However, both the
experimental realization and characterization of entanglement

hacnmin avwanndiaale AifR cunle Fan nvretnmne sirith maaner mautialas Tha

Table 1| Creation of a |W,,)-state (N = {6,7,8})

7 = 1.16 s) represent the qubits. Each ion qubit in the linear string i
individually addressed by a series of tightly focused laser pulses o1
the [S) =S, ,s(m; = —1/2)+ |D) = Ds;5(m; = —1/2) quadrupol
transition employing narrowband laser radiation near 729 nm
Doppler cooling on the fast § « P transition (lifetime ~8 ns) anc
subsequent sideband cooling prepare the ion string in the grounc
state of the centre-of-mass vibrational mode’®. Optical pumpin,
initializes the ions’ electronic qubit states in the |S) state. Afte

preparing an entangled state with a series of laser pulses, th
[ B B W EAEREAEAS

Aisantiime abata ia wand At wnth oA it ntata calastice

Check state via fluorescence

|l
0.10
0.05
0

CODODDS
DCODCO00

(XZOC.(:I(JI'I"‘G
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Figure 1| Absolute values, |p|, of the reconstructed density m
|Wg) state as obtained from quantum state tomography.
DDDDDDDD...SSSSSSSS label the entries of the density matr

—=10,500--D) +-=0,05D--D) + =21, 00D---D)

Initialization Entanglement the blue coloured entries all have the same height of 0.125; the
- coloured bars indicate noise. Numerical values of the density r
' Ry (2arccos()/ V) 4 = N = 8 can be found in Supplementary Information. In the
|0, 555:--S) ' M > " A .
' | ' corner a string of eight trapped ions is shown.
(ﬂ) RL(mR, (=) R (x) : \I—.NIOSDDD) f'{%i“DDDD)
! R! (2 aresin(l /N1
|0,DDD---D}y . (2)
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Compressed sensing

From Wikipedia, the free encyclopedia

o

Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for
efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems. This is based on the principle that, through
optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Shannon-Nyquist sampling theorem.
There are two conditions under which recovery is possible.l'! The first one is sparsity which requires the signal to be sparse in some domain. The
second one is incoherence which is applied through the isometric property which is sufficient for sparse signals.[?![5]

An early breakthrough in signal processing was the Nyquist-Shannon sampling theorem. It states that if the signal's highest frequency is less than
half of the sampling rate, then the signal can be reconstructed perfectly by means of sinc interpolation. The main idea is that with prior knowledge
about constraints on the signal’s frequencies, fewer samples are needed to reconstruct the signal.

Around 2004, Emmanuel Candés, Terence Tao, and David Donoho proved that given knowledge about a signal's sparsity, the signal may be
reconstructed with even fewer samples than the sampling theorem requires.[*l®] This idea is the basis of compressed sensing.

PRL 105, 150401 (2010) PHYSICAL REVIEW LETTERS
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Quantum State Tomography via Compressed Sensing

David Gross,' Yi-Kai Liu,2 Steven T. Flammia,3 Stephen Becker,” and Jens Eisert’
'Institute for Theoretical Physics, Leibniz University Hannover, 30167 Hannover, Germany

*Institute for Quantum Information, California Institute of Technology, Pasadena, California, USA

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada

*Applied and Computational Mathematics, California Institute of Technology, Pasadena, California, USA

*Institute of Physics und Astronomy, University of Potsdam, 14476 Potsdam, Germany

(Received 21 October 2009; published 4 October 2010)

We establish methods for quantum state tomography based on compressed sensing. These methods are
specialized for quantum states that are fairly pure, and they offer a significant performance improvement
on large quantum systems. In particular, they are able to reconstruct an unknown density matrix of
dimension 4 and rank r using O(rdlog®d) measurement settings, compared to standard methods that
require d> settings. Our methods have several features that make them amenable to experimental
implementation: they require only simple Pauli measurements, use fast convex optimization, are stable



How many detectors do you need for Entanglement Detection?

1 < #Detectorspw < #DetectorStomography = d?

min #Detectorsgws =7
{Pi}

Our contribution: Entanglement Detection with Single Hong-Ou-Mandel Interferometry

Chang Jian Kwong,! Simone Felicetti,*® Leong Chuan Kwek," %% and Joonwoo Bae™ *

' Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singap:
* Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, S
! Laboratoire Matériauz et Phénoménes Quantiques, Sorbonne Paris Cité,
Université Paris Diderot, CNRS UMR 7162, 75018, Paris, France
* Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore 639675, Singapor
* National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapo
® MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, 117543, Singapore
"Department of Applied Mathematics, Hanyang University (ERICA),
55 Hanyangdaechak-ro, Ansan, Gyeonggi-do, 426-791, Korea
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W is an entanglement witness if and only if
trlcW| >0 V o€ SEP
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AW that can detect all entangled states
Linear Transformation —~
Detection Condition -
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Experimental Proposal N
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Story Three: Information of Three (Tripartite) Quantum Systems
but, with un-invited guy



Cryptographic Scenario

Bob
Kavesdroh
B .

= o

p

who prepares quantum states

\4

who wants to get Alice’s states while v
(dynamics) Alice’s state evolves in time

who wants get information (in terms of bits) from
quantum states (qubits) by measurement



Cryptographic Scenario

LA TIRN

pa € S(Ha) —

Quantum channel PB € S(HB)

Aplpal = trg[U(pa ® og)U"]

- )
’
K
A
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Complementary channel



History of Cryptography
1926 One-Time Pad (Vernam cipher)

2nd World War | Significance of cryptographic systems

1948 Shannon’s proof: perfect secrecy of one-time pad

DES/AES:
Private-key systems / Symmetric keys
Rivest, Shamir, Adleman (RSA), Diffie-Hellman:

Public-key systems / Asymmetric keys T

Modern Cryptography: development of security analysis

1977

-defining security: parameters / assumptions

-hash functions

-random generators

-computational models: computational complexity, e.g. P=NP?

19948 Shor’s factorisation algorithm in quantum computation




On Security: Reductionist’s approach \What do we mean by proving security?

Step 1: Define security Keyword: Assumptions, Security

Step 2: Explain correspondence to implementation and elements of security

Step 3: REDUCE the analysis to its ultimate equivalence to the definition of security

Rivest, Shamir, Adleman (RSA): Public-key systems / Asymmetric keys

Security of public-key systems —ilf=— Foctorisation Problem: Factorisation of BIG numbers

How hard is it to solve the factorisation problem?
ex. 251 * 479 = 120,229, >100 digits, +100 yrs

Complexity of factorisation (computational security) is unknown yet. (Unproven assumption)

One-time pad contains perfect security: Shannon inf-theoretic, symmetric keys, private-key systems.

provable security! (Information-theoretic security)

Security of private-key systems i Secret Key
Alice Bob \V/Eve Probability

0 0 e 1/2
1 1 e 1/2




If quantum computation is realised, quantum algorithms...
CAN SOLVE FACTORISATION PROBLEM IN AN EFFICIENT WAY.

‘key idea of RSA protocols’

\/

NEW CRYPTOGRAPHIC PROTOCOLS: QUANTUM CRYPTOGRAPHY

IT’S POSSIBLE TO IMPLEMENT QUANTUM COMPUTERS

|. Cirac and P. Zoller in 1995, recipients of Wolf Prize (2013)



Entanglement means security

A

o O O O
o O O O
—_o O =

-

_|_

]
_o O =
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ot =00" o=

(1)
0
0

\ 1/

3?paBE, such that trgpapr = ¢ 5 PABE — ijB X PE

¢t € S(Ha®@Hp)

paBc(z,y, z|a,b,¢) = trlpapc Mg @ M, ® M| = tr[¢pl 5 @ pc M2 @ M5 @ M

= tr[¢} g My @ MJtr[pc MS] = pap(x,yla, b)pc(z|c)

Alice Bob \v/Eve Probability

0 0 e 1/2
Parties AB are completely independent with any other C! 1 1 £ 1/2

I(A,B:C) =0



Quantum Communication Scenario
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Quantum Communication Scenario
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Quantum Communication Scenario

Alice

¢™) = (|00) + [11))/v2

A

{M,

®

Noise Source

-

Message

% v}

10}

X

Bob




Quantum Communication Scenario
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Quantum cloning without signaling

N. Gisin
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

Received 26 January 1998; accepted for publication 25 February 1998
Communicated by P.R. Holland

Abstract

Perfect quantum cloning machines (QCM) would allow one to use quantum non-locality for arbitrary fast signaling.
However, perfect QCM cannot exist. We derive a bound on the fidelity of QCM compatible with the no-signaling constraint.
This bound equals the fidelity of the BuZek-Hillery QCM. (©) 1998 Elsevier Science B.V.

“Perfect quantum cloning would allow one to use quantum non-locality for arbitrary fast signaling”



No-Signaling Principle

] Bae,W-Y Hwang,Y-D Han, 201 |

N Gisin 1998
] Bae and A Acin 2006
Optimal Quantum Cloning < > Optimal Estimation/Discrimination
Asymptotic Equivalence
k endi
PRL 107, 170403 (2011) PHYSICAL REVIEW LETTERS 21 OCTOBER 3011

No-Signaling Principle Can Determine Optimal Quantum State Discrimination

Joonwoo Bae,* Won-Young Hwang,” and Yeong-Deok Han’

'School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 130-012, Republic of Korea
“Department of Physics Education, Chonnam National University, Gwangju 500-757, Republic of Korea

>Department of Game Contents, Woosuk University, Wanju, Cheonbuk 565-701, Republic of Korea
(Received 7 March 2011; published 20 October 2011)

We provide a general framework of utilizing the no-signaling principle in derivation of the guessing
probability in the minimume-error quantum state discrimination. We show that, remarkably, the guessing

p——



Security of Quantum Cryptography: Quantum theory governs Nature!

Quantum mechanics is tightly connected to Relativity Relativit

) Faster-than-Light Travel

Newton’s mechanics

Batter Running
tfield
- gai AT
W e — @ {*
b 30 m/s 10 m/s X
-8
il i

As seen by outfielder, ball is approaching her at
(30 m/s) + (10 m/s) = 40 m/s
a

Quantum Mechanics in 1 Slide

Classical Probability: Quantum Mechanics:
St S\ A g, iy, -+ u,\l« /}I
'\'r.'l T '\'nu l)n (In “n] U um.' ((n /fn
p, =0, 21}( =] a,€C, 2](1“3 =]
Can apply linear Can apply linear
transformations that transformations that
conserve 1-norm of conserve 2-norm of
probability vectors amplitude vectors

Research in quantum cryptography: The principle is secure but its implementation is insecure.
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PRL 117, 120501 (2016) PHYSICAL REVIEW LETTERS 16 SEPTEMBER 2016

Grover Search and the No-Signaling Principle

Ning Bao
Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics,
California Institute of Technology 452-48, Pasadena, California 91125, USA

Adam Bouland
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

SECTION G: OPEN PROBLEMS

We have shown that in several domains of modifications of quantum mechanics, the resources required
to observe superluminal signaling or a speedup over Grover’s algorithm are polynomially related. We ex-
trapolate that this relationship holds more generally, that is, in any quantum-like theory, the Grover lower
bound is derlvable from the no-mgnahng prmcnple and vice-versa. further hint in this dlrelon is that

: quantum
state discrimination can be expected- to lpy SOme Nonzero aplty 'orsper uminal signa mg. “There 1s
a substantial literature on generalizations of quantum mechanics which could be drawn upon to address
this question. In particular, one could consider the generalized probabilistic theories framework of Bar-
rett [31], the category-theoretic framework of Abramsky and Coecke [32], the Newton-Schrédinger equation
[33], quaternionic quantum mechanics [34], or the Papadodimas-Raju state-dependence model of black hole
dynamics (17, 18, 35]. In these cases the investigation of computational and communication properties is
inseparably tied with the fundamental questions about the physical interpretations of these models. Possibly,
such investigation could help shed light on these fundamental questions.
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PRL 117, 120501 (2016) PHYSICAL REVIEW LETTERS 16 SEPTEMBER 2016

Grover Search and the No-Signaling Principle

Ning Bao
Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics,
California Institute of Technology 452-48, Pasadena, California 91125, USA

Adam Bouland
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

SECTION G: OPEN PROBLEMS
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Learning from the history

C. Helstrom, A.
Holevo, H.Yuen, Lax,
and Kenney (1974-6)

1930 1940 1960
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W. K.Wootters and W.
Zurek,“A single quantum
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Nature 229 802 (1982)

4 1990 t
|

J. 1. Cirac and P. Zoller,
“Quantum Computation
with Cold Trapped lons”
PRL 74 4091 (1995)

v
J. Bell, Physics I, 195 (1965)

 / Bell’s Theorem, Non-Locality

A. Einstein, B. Podolsky, and N. Rosen,
Phys. Rev. 47,777 (1935)

E. Schroedinger and M. Born (1935) -
“Entanglement”

Entanglement, Steering

Quantum Signal Processing

| >

No-Cloning Theorem

BB84 l

Quantum State Engineering
C. H. Bennett and G. Brassard,

“Quantum Cryptography”,
Bangalore (1984)

A. Ekert

“Quantum cryptography based on
Bell’s theorem”, PRL 67 661 (1991)

Quantum Cryptography

\4

C. H. Bennett, G. Brassard, and D. Mermin,

“Quantum cryptography without Bell’s theorem”
PRL (1992)



Quantum Cryptography in Practice

- On-Going and Future Direction -
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An unbreakable code

Quantum key encryption gives computer security
a random code key that hackers can't crack.
[t relies on individual light particles called photons

KCY VALULS
POLARIZATION PHOTONS

that stream over a fiber-optic line from one Diagonal \ }f
computer to another. How it works:
ESTABLISHED 0 1
BIT VALUE
TRANSMISSION
User A (“Alice™) sends a stream of If & hacker tries to intercept BEVECTION
photons through a randomly selectad the photon stream, his or her i ALTERS
filter that gives each light particle & fliter changes Its onentation,
vertlc_al. honzo(\tal ar diagonal The ems@ropomg 5 Y . I
polanzation. Alce keeps a record of detected immediately, e
the photons and thelr orlentations, | t ' B~
- " | vermea
e [
POLARIZATION — l !
FILTER e S50 : } | DINGONAL
B B
LASER L e ) i : ! g User B (“Bob")
- ;| : b randomly selects a
a S DU SR b ;i fikerfor each
LunpoLsrizep | i i & i ¢ ! photon and
FHOTON T : i i 4 i ¢ ! recordsthe
SR i polarzation and its
' ; : E ' value, which is
ALICE sends these values —f 1 0 0 0 1 0 0 1 0 0 0 1 eitherzemorone
and photons / = \ / = \ I \ = == I
BOB detects these values and é
photons; note that the phatons X+ + X+ X X+ X X + + > ‘\ _
are not all detected correctly. { o 1 0 1 1 0 1 0 o0 o0 1 SEe
- B
SHARED SEQUENCE ' < i i o A & ' .
This communication £
takes place overa l \  Bob tells Alice which filters he used, but not each photon's value. Alice informs
public channel. - = Bob which measurements wera made with the incorrect filter. The remaining bits
; form the encryption kay.
ENCRYPI'ON KEY THE 1 o - ' " LA o 1 o LALJ o l

Sources: Bottedle, Scientific Amencan

MARY T. NGUYEN | DISPATCH



B(H) bounded operators

8(7‘[) quantum states p > () trp = 1

Quantum Cryptographic Scenario p(AXB]\g

Entanglement-based scheme:

PO = (1da @ A6 ) ap(6t|EN @10) (0]

Secret-key distillation protocol: A (%)
Local Operation and Public Communication (LOPC)

#sbit

Kp(A: B||F)= sup N

N,AYEP)

(XN)

PAB

e S(Ha®Hp)®N)




Encoding Transmitter Detector Decoding

Message
Quantum uantum
{2f— o2 }| — {0z }| ™ o> | —{y}
Decoded
Message
Parameter Estimation
Quantum Quantum
Source Channel e.g. tomography,
Coding Coding discrimination,
information ...

Noise Source

Quantum Operations

B(H®N) — B(HEM)

i) Preparation of quantum states

ii) Transmission of quantum states

iii) Detection/Measurement of quantum states

iv) Post-processing (parameter-estimation, key-distillation, error-correction, privacy amplification.)
- Quantum Information Theory Tools



Quantum Systems: Systems governed by the laws of quantum mechanics

Encoder ;

: , Decoder

Ex. Atoms, Electrons, Photons, ... Alice Loe Photoreceiver Bob
| | | i
E i 25km | |
| | | |
”&_I__CO)__E i @) | : Do
0 WDM: IR 0 o1] |
| M Alin | E PC ‘

quantum systems for long-distance communication: photons, hardly interacting during transmission



Encoding Transmitter Detector Decoding

Message
Quantum uantum
{2f— o2 }| — {0z }| ™ o> | —{y}
Decoded
Message
Parameter Estimation
Quantum Quantum
Source Channel e.g. tomography,
Coding Coding discrimination,
information ...

Noise Source

Quantum Operations

BH®N) — B(H®M)

iii) Detecti¢ /Measurement of quantum states

iv) Post-processing (parameter-estimation, key-distillation, error-correction, privacy amplification.)
- Quantum Information Theory Tools



History of Quantum Cryptog

raphy

1994,8

2000

channel noise
2003,4

source preparation

2007

channel noise

2011

detector problems

2014
detector problems

2016

source,channel,detectors
compassable security
realistic security

Shor’s factorisation algorithm in quantum computation
RSA reserved to be broken

The first security proof (Shor, Preskill): < 11%

Decoy QKD (Hwang) The problem of single photon sources
SARGO04 (Geneva),

The Most general security proof _
(Bae, Acin) The highest error-rate

Measurement-Device-

Independent (MDI) QKD Security not yet fully proven
Device-Independent QKD can tolerate 1% error-rate
Future direction: Composable

New QKD protocols Realistic security



Quantum Computer, Quantum Evolution, and Quantum Simulation
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Turing Machine

moving CPU
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readiwrite device —)H
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Quantum Turing Machine ?



Quantum theory, the Church-Turing principle and the universal
quantum computer

DAVID DEUTSCH*
Appeared in Proceedings of the Royal Society of London A 400, pp. 97-117 (1985)'

(Communicated by R. Penrose, F.R.S. — Received 13 July 1984)



2 Quantum computers

Every existing general model of computation is effectively classical. That is, a full specification of its
state at any instant is equivalent to the specification of a set of numbers, all of which are in principle
measurable. Yet according to quantum theory there exist no physical systems with this property. The
fact that classical physics and the classical universal Turing machine do not obey the Church-Turing
principle in the strong physical form (1.2) is one motivation for seeking a truly quantum model. The
more urgent motivation is, of course, that classical physics is false.

Benioff (1982) has constructed a model for computation within quantum kinematics and dynam-
1but 1t 1sst111 effc1ve 1ass1ca11n the above sense. ItlS constructed SO that atthe end of each

elementary computational step, no characteristically quantum property of the model —interference,
non-separability, or indeterminism — can be detected. Its computations can be perfectly simulated by
a Turing machine.

Feynman (1982) went one step closer to a true quantum computer with his ‘universal quantum
sulator s consists of a lace of spin syste 1th nearet-lghur | mteratlons that

freely specifiable. Although it can surely simulate any system with a finite-dimensional state space (1
do not understand why Feynman doubts that it can simulate fermion systems), it is not a computing
machine in the sense of this article. ‘Programming’ the simulator consists of endowing it by fiat with



__Albert (1983) has described a quantum mechanical measurement ‘automaton’ and has remarked
that its properties on being set to measure itself have no analogue among classical automata. Albert’s
automata, though they are not general purpose computing machines, are true quantum computers,
members of the general class that I shall study in this section.

__In this section I present a general, fully quantum model for computation. I then describe the uni-
versal antum eutr whleh is e'able 'erfectl / s1mu1t1n eve ﬁmte reallzable h s1e
system Tt can simulate 1deal closed (zero temperature) systems mcludmg all other instances of quan-
tum computers and quantum simulators, with arbitrarily high but not perfect accuracy. In computing
strict functions from Z to Z it generates precisely the classical recursive functions C(7) (a manifesta-
tion of the correspondence principle). Unlike 7, it can simulate any finite classical discrete stochastic
process perfectly. Furthermore, as we shall see in §3, it as many remarkable and potentially useful
capabilities that have no classical analogues.

_Like a Turing machine, a odeqan computer Q, consists of two components, a finite pro-
cessr and an infinite mo of which only a finite portion is “ever used. cmpttln 'poceds
steps of fixed duran ' dg each step "o th pocessorad a ﬁmte part of the 'e
mece 'rest of e mreagsttl R - | |




3 Properties of the universal quantum computer

We have already seen that the universal _quantum computer Q can perfectly simulate any Turmg ma-
chine and can simulate with arbitrary precision any computer or simulator. I shall now show
how Q can simulate various physical systems, real and theoretical, which are beyond the scope of the
universal Turing machine 7.
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Quantum Turing Machine can be simulated in a quantum circuit
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Quantum Computation: Exploit qguantum dynamics for computational purposes

OOO
Va
N

U :

0)°" @ |A) = [¢hn+a)

Solovay-Kitaevtheorem VU  3{Us, Ui}, s. t. || U —1L;(U;)| < €

Products of Two- and single qubit unitary transformations can efficiently
simulate arbitrary unitary transformations

universal set of gates : CNOT gate + single-qubit operations
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J4
Adiabatic Quantum Computation (AQC)
E. Farhi et al., Science 292, 472 (2001)
Energy Spectrum
System Hamiltonian:
______________ H=(-s)H;+sH,
Linear interpolation: s = 71,
S
""""""" - Ground state of H, is easily accessible.
O -------------- - Ground state of H, encodes the solution =~ S N
to a hard computational problem.

D. Aharonov et. al., Adiabatic quantum computation is equivalent to standard quantum computation
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)
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One-way quantum computer: R. Raussendorff and H. Briegel, PRL 2001
Figure. J. Miller and A. Miyake, npj QI 2016 ; M. Cramer et al. Nat. Comm. 2013
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Is quantum computer faster?

on-going efforts in the group of Joonwoo Bae



W a2 B2
Causation in Quantum Systems: _final correlations
Local Laboratories
(Well-defined local maps)

time | 41 49 Wa1,42.B1,B2 EB1—B2

Initial correlations
Wa1 B1

Main Question:

Problem 1. What’s the causation from the approximately symmetric subspace?
(in the picture of Reichenbach common cause principle)

Applications: Causal Quantum Networks, Channel Capacities of Causal Networks



(fundamental) Analysis of Information Flow - the origin of the computational power

Information Flow I

0 S1
0 S92
Quantum
Information
Processors
0 SN




State

Dynamics

Dynamical Maps

Quantum Information Theory

pESH)

Completely positive maps

I®AN>0
Do) = Loplt)y
dt’o = ~tp

Classical Information Theory

p(x)

Positive maps (stochastic process)

A>0

p(xnatn; Ln—1, tn—l; e ;mOatO)

B =
o Hp(xz, ti|xi—17 ti—l)p(a:()? t())
1=1
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Colloquium: Non-Markovian dynamics in open quantum systems

Heinz-Peter Breuer

Physikalisches Institut, Universitat Freiburg,
Hermann-Herder-StraBe 3, D-79104 Freiburg, Germany

Elsi-Mari Laine

QCD Labs, COMP Centre of Excellence,
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Jyrki Piilo
Turku Centre for Quantum Physics, Department of Physics and Astronomy,
University of Turku, FI-20014 Turun yliopisto, Finland

Bassano Vacchini . . .
o vacenint FIG. 3. The information flow between an open system and its
Dipartimento di Fisica, Universita degli Studi di Milano,

Via Celoria 16, 120133 Milan, ltaly environment according to Eq. (32). Left: The open system loses
and INFN, Sezione di Milano, Via Celoria 16, 1-20133 Milan, ltaly information to the environment, corresponding to a decrease of
Z;n(2) and Markovian dynamics. Right: Non-Markovian dynam-
ics is characterized by a backflow of information from the
environment to the system and a corresponding increase of

Tine(2).
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Operational characterization of k-divisiblity

Main result. Ay is k-divisible iff p € [0,1] V®;, $5 CP maps, %Di (Ao @1, A 0Py) <0

k-divisiblity f ~ ) B
e )
d
\ ———) — . — U
: *
Operational measure Dﬁ’[@l, @2] < DP[®,, @2] < .<DZ (D, (I)2] < <D§[<I>1, <I)2].

The more entangled, the more useful!

Entanglement structure
== > - 5,

Ssep_51CSQC .CS;=5 7‘[@7{))

week ending

PRL 117, 050403 (2016) PHYSICAL REVIEW LETTERS 29 JULY 2016
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Information-theoretic characterization of k-divisiblity

d

Main result. Ay is k-divisible iff p € [0,1] V®;, $5 CP maps, d—Di (Ao @1, A 0Py) <0
D{(Aro @1, Ay 0 @2) = max|[plid @ Ay 0 @1](p) — (1= p)lid @ Ay 0 @2](p)]
Se={peSHRXH): SN(p) <k, SN(p) = mlzil (max SR(v;))}
p;sw; J
d
Main result; Ay is k-divisible iff p € [0, 1] \v’CI)l, CI>2 CP maps %Hmin(A‘B)pABk(t) >0
paB, (t Z ¢:]i) (i 4 ® (ide ® Ay 0 ®;)[p] 5
1=1,2
PRL 117, 050403 (2016) PHYSICAL REVIEW LETTERS 29 TULY 2016
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In this work, we show the operational characterization to the divisibility of dynamical maps in terms of
the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum
channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to
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Quantum Evolution ~ Resource Theories ~ Quantum Computation ~ ...

Applications: Detection Methods of Correlations, via the Operational Characterisation

Inf. Theory: Min-entropy versus Conditional Mutual Information, in Markovian or k-divisible Dynamics

Resource theory: Entanglement and Non-Markovianity

Thermodynamics vs k-divisibility

(semi-) Device-Independent Quantum Information Processing*

*No-signaling principle can tightly characterise the guessing probability, trace-norm (cb norms)

- Properties of Maps Induced from Entanglement Structure™*



Quantum Information Theory



Communication-centric view
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Schematic diagram of a general communication system (C. E. Shannon, A Mathematical Theory of Communication, |1948)




Communication-centric view

Encoding Transmitter

Message

Quantum Quantum
Source Channel
Coding Coding

Quantum Operations

BH®N) — B(H®M)

Schematic diagram of a general communication system
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e.g. tomography,
discrimination,
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Communication-centric view

Encoding Transmitter Detector Decoding
Message
i i Quantum Quantum i
{'ZC} {/0513} {pa:} Sources > Sources > {y}
Decoded
Message
Quantum Information Theory
Quantum Quantum Quantum Cryptography: Key Distribution
Source Channel Quantum Hacking
Coding Coding Quantum channel capacity
Quantum coding: source/channel coding

Quantum error-correcting code
Quantum Operations

BHEN) — B(H®M)

Framework from Math. Topics: Related Applied Math. Topics:
Convex Optimisation

Operator algebra e L _
(Semidefinite Programming)

Functional analysis
Operator space theory
Number Theory

Compressive Sensing
(Tomography, Estimation)
Metrology (parameter estimation)
‘Information’ geometry
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Abstract

In quantum information processing it may be possible to have efficient computation and
secure communication beyond the limitations of classical systems. In a fundamental point

of view, however, evolution of quantum systems by the laws of quantum mechanics is more
restrictive than classical systems, identified to a specific form of dynamics, that is, unitary
transformations and, consequently, positive and completely positive maps to subsystems.

This also characterizes classes of disallowed transformations on quantum systems, among
which positive but not completely maps are of particular interest as they characterize
entangled states, a general resource in quantum information processing. Structural physical
approximation offers a systematic way of approximating those non-physical maps, positive but
not completely positive maps, with quantum channels. Since it has been proposed as a method
of detecting entangled states, it has stimulated fundamental problems on classifications

of positive maps and the structure of Hermitian operators and quantum states, as well as
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