Road to find needles

최형국

전북대학교

"Looking for a needle in a haystack"

- What needle am I looking for?
- Which haystack need I search for?
 - How to find it?

Mesoscopic physics

Mesoscopic world

2DEG

Nanowires, Carbon nanotube

and the second second with the second s

Quantum dots

© PhotoCory.com

Manager and a shall be

Aster in

Topics in Mesoscopic physics

Today's keywords

Physics in 2-D

Manipulating electrons' path is easier in 2D

$$A_{a} = e^{i(k_x x + k_y y + k_z z)}$$

$$A_{a} = e^{i(k_x x + k_y y)}$$

$$I$$

Anyon

Anyon

Excitations in FQHE are strong candidates to be anyon

BUT, Never proved yet experimentally !!

2-dimensional electron gas (2DEG)

Why is 2D world exciting ?

High mobility, long mean free path, long coherence length

Ballistic transport, electron interference

Easy electrostatic control by gate

Building complicated structure

Unique phenomena

Today's keywords

Why low dimension (2DEG)?

Why quantum Hall?

Why interferometry?

Classical Hall effect

filling factor v = number of filled LL = number of electron / flux quantum

Fermion vs. Boson

VS.

B increase \rightarrow degeneracy increase

Edge states in QHE

Edge states in QHE

Edge states in QHE

ordinary 2D metal

quantum Hall edge states chiral 1D metal

- Easy to engineer electron path
- No back scattering
- The quantum hall effect helps us mimic lasers

Volume 45, Number 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany

and

cleaner 2D electrons + Low T + Strong B

Fractional QHE

31 May 1982

Two-Dimensional Magnetotransport in the Extreme Quantum Limit

PHYSICAL REVIEW LETTERS

D. C. Tsui,^{(a), (b)} H. L. Stormer,^(a) and A. C. Gossard Bell Laboratories, Murray Hill, New Jersey 07974 (Received 5 March 1982)

tion. Our observation of a quantized Hall resistance of $3h/e^2$ at $\nu = \frac{1}{3}$ is a case where Laughlin's argument breaks down. If we attribute it to the presence of a gap at E_F when $\frac{1}{3}$ of the lowest Landau level is occupied, his argument will lead to quasiparticles with fractional electronic charge of $\frac{1}{3}$, as has been suggested for $\frac{1}{3}$ -filled quasi one-dimensional systems.²¹

Fractional QHE

VOLUME 50, NUMBER 18

PHYSICAL REVIEW LETTERS

2 MAY 1983

Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations

R. B. Laughlin

Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (Received 22 February 1983)

This Letter presents variational ground-state and excited-state wave functions which describe the condensation of a two-dimensional electron gas into a new state of matter.

PACS numbers: 71.45.Nt, 72.20.My, 73.40.Lq

 $Y_{m}(Z_{1}, Z_{2}, ..., Z_{N}) = \bigotimes_{i < j}^{N} (Z_{i} - Z_{j})^{m} \exp_{\hat{e}}^{\hat{e}} - \frac{1}{4l^{2}} \bigotimes_{k}^{N} |Z_{k}|^{2} \bigcup_{\hat{u}}^{\hat{u}}$

Nobel Prize in physics 1998

" for the discovery of a new form of quantum fluid with fractionally charged excitations"

Why Quantum Hall ?

- The quantum hall effect helps us mimic lasers in quantum optics
 - Electrons directed along definite paths flexible design, definite acquired phase
 - No back-scattering insensitive to impurities
- The quasiparticles in the fractional QHE regime is expected to be anyon

Today's keywords

Why low dimension (2DEG)?

Why quantum Hall?

Why interferometry?

Why interferometry?

- Interferometers are phase probes
- Good platform to explore fundamental quantum physics
- Electron interferometer opened electron quantum optics

Pred Bindy Brankin Wayse i Ancies texinity in the Hantip Statistics

I. Nederet - M. Chatter et a., Science (2014) E. Weisz, H. K. Choi et al., Science (2014)

min

Electronic interferometers

How do we construct electronic interferometers?

Optical interferometers

Mach-Zehnder Interferometer (MZI)

Quantum Point Contact

On the one hand:

$$I_L = |r|^2 \times I, \ I_R = |t|^2 \times I$$

On the other hand:

 $\mathcal{Y} = r \times \mathcal{Y}_L + t \times \mathcal{Y}_R$

- Conductance quantization
- QPC acts like as beam splitter

Realization of electronic MZI

Photonic beam \rightarrow quantum Hall edge state Beam splitter \rightarrow quantum point contact (QPC)

Yang Ji et al., Nature 422,415 (2003)

Aharonov-Bohm effect

Realization of electronic MZI

Yang Ji et al., Nature 422,415 (2003)

Electronic Fabry-Perot interferometer

AB oscillation in FPI

Zoom out

What can we do with interferometers ?

Controlled dephasing

Double slit experiment

"It is impossible to design an apparatus to determine which hole the electron passes through, that will not at the same time disturb the electron enough to destroy the interference pattern"

Richard Feynman

Double slit experiment

Pure state (separable)

composite system

$|\Psi_{total}\rangle = \langle Y \rangle \dot{A} | C \rangle$

Entangling systems via Coulomb interaction

Entangling detector - **interferometer**

interference term

$$P_{output} = \left| \left\langle Y_{total} \left| output \right\rangle \right|^2 = \left| t_l \right|^2 + \left| t_u \right|^2 + 2t_l t_u \cos D j_{AB} \left\langle C^l \left| C^u \right\rangle \right\rangle$$

'which path' information

What is dephasing ?

entangled state interferometer - detector

$$\left|\Upsilon_{total}\right\rangle = \left|\mathcal{Y}_{L}\right\rangle \ddot{\mathsf{A}}\left|D^{L}\right\rangle + \left|\mathcal{Y}_{R}\right\rangle \ddot{\mathsf{A}}\left|D^{R}\right\rangle$$

$$P_{output} = \left| \left\langle Y_{total} \left| output \right\rangle \right|^2 = \left| t_L \right|^2 + \left| t_R \right|^2 + 2t_L t_R \cos Dj \left\langle D^L \right| D^R \right\rangle$$

How to build a good detector ?

 $\left\langle D^L \middle| D^R \right\rangle = 0$

Quantum dot

Experiment: E. Weisz, H. K. Choi *et al.*, PRL **109**, 250401 (2012) Theory: SC. Youn et al, PRB (2009); B. Rosenow & Y. Gefen PRL (2012)

E. Weisz, H. K. Choi *et al.*, PRL **109**, 250401 (2012)

Can lost interference be recovered ?

Yes, by erasing which-path information

Asking to

"Which path did electron pass through ?"

Quantum eraser

Quantum eraser with photon

Electronic Double MZI for QE

Double MZI

When System electron pass through upper path

Detector current : $P(D4|_{s})$

Double MZI

When System electron pass through lower path

Measured which-path information K:

 $K(\phi_D) \stackrel{\text{Detector current :}}{=} P(D4 | \varsigma) \stackrel{P(D4}{=} \gamma) \stackrel{\text{here, } \gamma = \pi}{\leq} Sin(\phi_D)$

Realization of coupled MZIs

Experiment: E. Weisz, H. K. Choi *et al.*, Science (2014) Theory: K. Kang PRB (2007)

Electronic Quantum eraser

"manifestation of complementarity in electronic system"

Summary

Experimental physics

Experimental physics

Electronic interferometers show unexpected behavior

"Unexpected double periodicity..."

(Time-reversal symmetry)

A. Yacoby et al PRL (1994)

"Unexpected non-linear behavior..."

(Lobe-structure)

I. Neder et al PRL (2006)

Fabry-Perot interferometer

"Role of interactions..."

(CD regime)

N. Ofek et al PNAS (2010)

"Unexpected pairing..."

(To be given a name)

HK Choi et al Nat. Com. (2015)

Waiting for your ideas...

How to find needles

Anyon

Graphene

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

Topological Insulators

© PhotoCory.com

All and the second second

late of