Novel optoelectronic properties of 2D materials: Ultrafast Optical Studies of Valley States in 2D Transition Metal Dichalcogenides

Apr. 12th, 2017

Jonghwan Kim

Department of Physics, UC Berkeley & LBNL

Department of Materials Science & Engineering, POSTECH

Atomically Thin 2D Crystals

Crystal structure

Graphene isolation

Atomically Thin 2D Crystals

Phosphorene

Graphene

Single atomic layer of carbon

MoS₂

h-BN

Semiconductors

Metal: NbSe₂, TaS₂, WTe₂

Novel electronic states in the exact 2D materials!

Atomically Thin 2D Crystals

Graphene

Massless Dirac fermion (Record high mobility)

MoS₂

Valley electronic state (Future electronic memory)

Phosphorene

Interlayer interaction (Tunable direct bandgap visible to zero-band gap)

van der Waals 2D Heterostructures

hBN substrate

Atomically engineered material for new physics

Geim, Nature, **499**, 419 (2013)

Outline

- **1. New information carrier**
 - : Valley state in 2D transition metal dichalcogenides (TMD)
- 2. Valley information manipulation
 - : Ultrafast and strong pseudomagnetic field in TMD monolayer
- 3. Valley information lifetime
 - : Ultralong valley polarization in TMD heterostructures

Degree of Freedom in Electrons

Valley Degree of Freedom

Graphene

Access to Valley State

Inversion symmetry: Zero magnetic moment

Helicity-dependent light absorption

TMD Monolayer

 MX_2 : M = Mo, W; X = S, Se MoS_2 , $MoSe_2$, WS_2 , WSe_2

Explicitly broken inversion symmetry

Strong SO coupling: Spin-Valley locking

Possibly ultralong spin/valley lifetime!

Direct bandgap semiconductor at (near) visible frequency

Convenient valley control with helicity of visible photon

Valley Polarization Control

Heinz (Stanford), Cui (HKU), Xu (U. Washington), Feng (PKU)

Review: X. Xu, et. al., Nature Physics 10, 343 (2014)

Valley Coherence Control

Valley Information

Bloch sphere for coherent valley polarization

Write: Polarization-controlled photoexcitation, spin-polarized carrier injection

Read: Photoluminescence, circular dichroism, valley Hall effect

1. Manipulation of valley information?

2. Lifetime of valley information?

Femtosecond Optics

1. Ultrafast time resolution: fs time resolution

atomic motion : $\Delta t \sim 1 \text{ nm} / 1000 \text{ m/s} = 1 \text{ ps}$

Pump

Probe

2. Ultra high peak power

peak power : 1 mJ / 100 fs = 10 GW
(note. 4 GW for nuclear power plant)

Using light to control matter

Nonlinear optical phenomena

3. Ultra broadband tunability

Superconductor

Terahertz, infrared, visibletoUVFree electronPhononElectronicPhotoemis

transition

Photoemission

Femtosecond optical pulse

Outline

1. New information carrier

: Valley state in 2D transition metal dichalcogenides (TMD)

2. Valley information manipulation

: Ultrafast and strong pseudomagnetic field in TMD monolayer

3. Valley information lifetime

: Ultralong valley polarization in TMD heterostructures

Spin/Valley Manipulation

Break valley degeneracy

Spin/Valley Manipulation

Valley Zeeman effect observation

8 T ~ 1 meV

Y. Li, *et. al.*, PRL **113**, 266804 (2014)
A. Srivastava, *et. al.*, Nature Physics **11**, 141 (2015)
G. Avivazan, *et. al.*, Nature Physics **11**, 148 (2015)
D. Macneill, *et. al.*, PRL **114**, 037401 (2015)

Ultrafast and Efficient Valley Control

Non-resonant femtosecond pulse with circular polarization

Ultrafast and Efficient Valley Control

Non-resonant femtosecond pulse with circular polarization

Optical Stark Effect: Pseudomagnetic field (Atomic physics)

Sample and Absorption Spectrum

Absorption at 1.68 eV

Transient Absorption Spectrum

Instantaneous response

Instantaneous response

Instantaneous response

Energy blueshift : 4 meV

Pump Power and Detuning Dependence

Energy shift :
$$\delta(\hbar\omega) = \frac{2S \cdot E_p^2}{\hbar\Omega}$$

S: optical Stark effect coefficient

 E_p : Electric field of pump pulse

 $\Omega: pump \ energy \ detuning$

Estimation of Pseudo-magnetic Field

Pseudomagnetic field :

 $B_{eff} = \frac{\Delta E}{2g_{ex}\mu_B}$

g-factor of valley exciton in WSe2 :

 $g_{ex} \sim 1.5$ (theory)

 $\Delta E = 10 meV:$

 $B_{eff} \sim 60 T$

 PRL 113 266804 (2014)

 PRL 114, 037401 (2015)

 Nature Physics 10, 343 (2014)

 PRB 88, 085440 (2013)

 Nature Physics 11, 148-152 (2015)

Outline

- **1. New information carrier**
 - : Valley state in 2D transition metal dichalcogenides (TMD)

2. Valley information manipulation

: Ultrafast and strong pseudomagnetic field in TMD monolayer

3. Valley information lifetime

: Ultralong valley polarization in TMD heterostructures

Strong SO coupling: Spin-Valley locking

Possibly ultralong spin/valley lifetime!

Exciton flips valley state fast!

Maialle, Silva and Shan, 1993 Yao group, 2014 Wu group, 2014

Exchange interaction: ~ 300 fsec

What if we can break exciton and leave only carriers? : Resident carrier

Lifetime limited by defect and low valley polarization

'Ultrafast' and 'intrinsic' process for exciton dissociation?

Controlling Electronic Structure in vdW crystals

Indirect to direct gap transition (MoS2) Direct bandgap 1.7 – 0.3 eV (Phosphorene) Interlayer electron-phonon Interaction (WSe2/hBN)

A. Splendiani, <u>J. Kim</u> et. al. Nano Lett. 10, 1271 (2010)

L. Li*, J. Kim*, C. Jin* et. al, Nature Nano 12, 21 (2017)

C. Jin*, J. Kim* et. al, Nature Physics 13, 127 (2017)

Also, Fai Mak et. al. PRL (2010)

Controlling Carrier Dynamics

Ultrafast charge separation in TMD heterostructure

X. Hong*, J. Kim*, S. Shi*, et. al., Nature Nanotechnology 9, 682 (2014)

Generation of Valley-Polarized Holes

Generation of Valley-Polarized Holes

Generation of Valley-Polarized Holes

Valley-polarized Hole Dynamics

Microsecond valley lifetime! : Orders of magnitude longer than previous report

Valley Polarization Analysis

Carrier population at a valley induces "oscillator strength decrease".

Valley Polarization Analysis

Large oscillator strength decrease

Pure resonance shift

Oscillator strength decrease occurs only at K valley: 100 % valley polarization

Valley Relaxation Mechanism

p₊ – p_{_} = 0 means: 1) Intervalley scattering:

2) Population relaxation:

Valley Relaxation Mechanism

Population relaxation dominates valley relaxation

Intervalley scattering rate > 40 microsecond!

Summary

Valley state in 2D TMD: Novel information carrier

1. Valley state manipulation

Optical Stark effect: Ultrafast pseudomagnetic field > 60 T

2. Valley lifetime

Ultrafast charge transfer process in TMD heterostructure: Lifetime > 1 us (can be longer than 40 us)

Acknowledgement

Advisor: Prof. Feng Wang

Wang group

Chenhao Jin Xiaoping Hong Sufei Shi Zhiwen Shi

Collaborations in Berkeley:

Prof. Steve Louie, Felipe H. da Jornada, Diana Y. QiuProf. Ron ShenProf. Alex Zettl, Dr. Jongmin Yuk (now in KAIST)Prof. Junqiao Wu, Dr. Joonki SuhProf. Michael Crommie, Dilon Wong

Arizona State Univ.

Prof. Sefaattin Tongay

KAUST

Prof. Lance Li

Peking Univ.

Prof. Yanfeng Zhang

Thank you!