Looking into the Universe: Higgs and Gravitational Wave

Sunghoon Jung (정성훈)

Seoul National University

2017. 3. 22 @ SNU Physics&Astronomy Colloquium

Physics of the Universe	
	10^19 GeV 10^-34m
nm A0 fm	
nuclear physics	Planck scale
biology chemistry	(universe might be born from O(1) quantum fluctuations?)

Among many features characterizing each physics system and its effective theory,,,

Higgs: uniquely shaping our daily life

Phase transition & vacuum condensation as universe cools freeze its interactions with elem particles — mass.

If Higgs were slightly different, our life would have been totally different (may not even exist).

SM and Higgs are confirmed

SM is not a complete theory

Many questions beyond the SM

- Why does **Higgs** (and daily life) look like today?
- What is **Dark Matter**?
- What is **Dark Energy**?
- Why is matter much more than anti-matter?
- neutrino mass, strong CP, inflation, cosmological constant, CPV sources, etc.

Unexplored Beyond the SM

Some history analogies

Uranus orbit

- Uranus orbit was not exactly the Keplerian/ Newtonian. It was a big puzzle in 1840's.
- Le Verrier postulated it is due to nearby planet's perturbation, and predicted its location. (1846)
- Neptune was discovered on the same night at the exact location (within 1-degree)!

Mercury perihelion precession

 A few years later, Le Verrier also found anomalous Mercury's perihelion precession.

- He predicted yet another planet, Vulcan, in between Mercury and the Sun. (1859)
- But, No planet was found.
- All other efforts to explain it failed; including nonstandard medium in between Mercury and the Sun.

This time, special relativity

This time,,,
 the solution w

the solution was found from a totally different approach: special relativity — the more fundamental theory of gravitation.

 Mercury is closest to the Sun's gravity and moves fastest, in which relativistic effects are largest.

Could have been expected...

• Newton wrote in *Principia*:

"1/r^2 law is proved with the greatest exactness from the fact that the aphelia are at rest... The slightest departure from it would necessarily result in noticeable motion of the apsides."

- But there was no principles to retain only 1/r^2...
- Indeed, higher-power terms exist in the Relativity.

Newton's gravity is only an effective theory (ET)

 In fact, Newton's theory was only an ET of the Relativity valid for low velocity and weak gravity.

- In fact, every theory we use is an ET valid/suited for certain physics systems!
 Core of our science and *reductionism*.
- We couldn't have done any physics if Mercury's motion is important in baseball trajectories.

Newton's gravity is only an effective theory (ET)

- In fact, Newton's theory was only an ET of the Relativity valid for low velocity and weak gravity.
- As an ET, all such power corrections not prohibited by symmetries shall be considered.

• Richard Feynman:

"Anything that are not prohibited is allowed."

What are symmetries of Newton's gravitation law?

- Rotational invariance of gravity.
- $V \ni 1/r$ is rotation-invariant.
- But higher-order terms
 1/r², 1/r³ are also invariant.
- They did exist and Newton's law was not absolute.
 The anomalous precession could have been expected.

Natural size of precession

ET even allows us to predict a natural size of precession!

$$V \ni \frac{1}{r}$$
 vs. $\frac{R_0}{r^2}$ $\frac{R_1^2}{r^3}$ $\frac{R}{r} \ll 1$

- R is the length scale in which gravity becomes very strong and Newton's ET breaks down.
- What is R value?

Natural size of precession

 In a gravity system with M and m orbiting at v, the only length scale present is

$$R \sim \frac{GM}{v^2}?$$

- Well, wrong v-behavior and v is not independent...
- The most global and inherent velocity scale was unknown at the Newton's and Le Verrier's era.

c: Next fundamental scale

- By the early 1900's, there were plenty of experimental evidences that c is a constant for all inertial observers.
- Einstein bravely assumed/discovered that c is the next fundamental and inherent constant velocity scale.

$$R \sim \frac{GM}{c^2}$$

$$2\frac{GM}{c^2}$$
 cf) Schwarzschild radius

 Adding *natural-sized* R/r^2 and R^2/r^3 terms to Newton's law does explain the Mercury observation!

c: Next fundamental scale

- By the early 1900's there were plenty of experimental • evide S. If Le Verrier knew about ET, Einst xt • he could have deduced the value of c funda well before Michelson-Morley and Einstein! GM c^2 arzschild radius
- Adding *natural-sized* R/r^2 and R^2/r^3 terms to Newton's law does explain the Mercury observation!

Ben Lee's prediction

- Such power of ET is not accidental.
- Benjamin W. Lee could predict the 4th quark (charm) mass (and its existence) in this way (1974)!

(to explain very small Kaon mass difference that couldn't be explained with u-d-s three quarks.)

• 'ET + naturalness'

Many such examples in physics history...

Particle physics prediction!

- SM is only an ET of a more fundamental theory.
- Based on the Higgs boson (and Dark Matter) data,

(in a way similar to Ben Lee's prediction)

the next energy cutoff scale of the SM ET, or new physics energy scale, was predicted !

That is just beyond the SM!

Unbearable lightness of the Higgs boson

 Almost whatever you do in QFT, you end up concluding that our life depends on this fine cancellation.

Unbearable lightness of the Higgs boson

 Almost whatever you do in QFT, you end up concluding that our life depends on this fine cancellation.

- Thinking the SM as an ET, we could convert it to a more comfortable one: (Higgs mass)² = (100)² = 1010000 - 1000000
- (only) if a new physics exists *just* beyond the SM!

Probing SM @ Particle Collider

charm, tau @ gluon @ electroweak precision test @ SLAC 3GeV (1970's) PETRA 40GeV(1972) SLAC SLC 90GeV (2000's) W,Z bosons @ top quark @ Higgs @ UA1,2 200GeV (1983) Tevatron 2TeV (1995) LHC 8 TeV (2012)

Tevatron 2TeV (1995)

Probing Higgs origins Physicists around the world are designing a range of particle colliders that are much bigs @ Particle Collider

 LHC with the highest collision energy ever (13TeV) produced 1M Higgs so far and currently probing highest energy scale directly.

- Future 1: A bigger collider with a higher collision energy
- Future 2: A more precise collider •

WORLD OF COLLIDERS

range of particle colliders that are much bigger than the Large Hadron Collider at CERN, Europe's particle-physics laboratory.

Proton collider

Electron-positron collider

CERN-HOSTED LARGE HADRON COLLIDER

Circumterence: 27 km

2009 - 35Energy: 14 teraelectronvolts (TeV)

JAPAN-HOSTED INTERNATIONAL LINEAR COLLIDER Froposed: 2030 Energy: ≤1 TeV

50 or 100 km

50 or 100 km

Length: 31 km

CHINA-HOSTED ELECTRON-POSITRON COLLIDER Proposed: 2028 Energy: 0.24 or ≤0.35 TeV

CHINA-HOSTED PROTON COLLIDER

Proposed: 2030s Energy: 70-100 TeV or 100 140 TeV

CERN-HOSTED SUPER PROTON COLLIDER

Proposed: 2035-40 Energy: 100 TeV

100 km

onature

Higgs origin candidate

- Supersymmetry
 - the symmetry btwn bosons and fermions
 - Fermion statistics is opposite to bosons'
 - cancelling any such dangerous effects
- Warped Extra dimension
 - 5th dimension is exponentially warped.
 - Plack scale in 4d projection is exponentially small.

Many others... but all predict new particles beyond the SM.

Higgs Effective Theory

- All these theories should have common elements to explain the origin of the Higgs.
- ET can (model independently) capture them.
- Efforts to measure power corrections to the SM Higgs and to deduce new physics.
 Various idea and interdisciplinary approaches...

$$\frac{m_{\rm Higgs}^2}{m_{\rm NewPhysics}^2}$$

Dark Matter

Observations

100

V

(km/s)

from 21 cm hydrogen

expected from visible disk

- It should abundantly exist.
- But what is it? How to discover them?

Dark Matter detectors

Gravitational Wave

- Orbiting binary black holes or neutron stars can bremsstrahlung GW while merging.
- Finally discovered at LIGO last year. (maybe 2017 Nobel?)

GW and particle physics

• As it travels farther than photons without being much perturbed,

(1) farther and earlier universe with **Dark Energy** (standard siren; GW amplitude tells us its distance),

(2) **DM** present everywhere in which GW propagates, or super-light DM whose wave properties can mimic GW.

• **1st order electroweak phase transition** for the Higgs mechanism can produce GW.

Future GW detectors and particle physics

Future GW detectors and particle physics

Various probes and ideas will lead us to early universe

- We are probing the new energy scale that the ET+naturalness of the Higgs boson (and DM) predict.
 Nothing so far yet. Becoming mysterious.
- Various probes are ongoing (often seemingly unrelated). They will somehow but surely merge onto unveil the next layer of the Universe soon! (Tomorrow can be another discovery day!)

Subjective measure

• The problem is that

ET+naturalness can give **Somewhat** quantitative prediction.

"How natural should it be?" is a subjective question.

ET + naturalness

- ET is at the core of our science and reductionism.
- Nature does seem to respect ET.
- Nature does seem to have an inherent notion of naturalness.

• Thus, ET can give powerful qualitative predictions, and also has somewhat quantitative power too.

Naturalness implies a new physics beyond the SM

- SM is only an ET of a more fundamental theory of the universe.
- Why is Higgs boson mass (and the SM energy scale) so muuuuuch 10^17 smaller than the Planck scale?

• To explain this, Naturalness predicts that the Planck scale is NOT the next cutoff scale of the SM ET.

There must be a new physics in between! Not far above!!

Bigger with higher energy

 Future 1: A bigger collider with a higher collision energy (probing new physics energy scales directly)

- Looking for new particles by directly producing them.
- More (single) Higgs data, rare Higgs phenomena.

Higher precision e^{+} Z H e^{+} \overline{W} \overline{W} H W \overline{W} H W \overline{W} \overline{W}

 Future 2: A more precise electron-positron collider (probing new physics effects indirectly)

- Much more clean Higgs data
- Looking for deviations from SM predictions