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Plan

1. Review of relativistic quantum field theory (QFT)
and its divergences

– ultraviolet (UV) and infrared (IR) divergences

2. Absence of UV divergence in superstring theory

3. Recent progress on understanding IR divergences
in superstring theory
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Quantum Field Theories

and their divergences
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At present we have a very good understanding of the
physics of the elementary constituents of matter and
the forces operating between them

– standard model of elementary particle physics

The framework used in describing this model is
relativistic quantum field theory (QFT)

– combines the principles of quantum mechanics and
special theory of relativity

– elementary constituents are point particles e.g.
electron, photon, quarks, · · ·
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QFT provides us with a tool for computing physical
quantities, e.g. scattering amplitudes of elementary
particles.

Most commonly used approach for studying
scattering amplitude in QFT’s is perturbation theory.

Take all the interaction effects to be small and carry
out a Taylor series expansion in the parameters that
label the interaction strengths.

The coefficients of the Taylor series expansion are
given by sum of Feynman diagrams.
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Example of a Feynman diagram in a theory with
particle mass m

q↘

p↗

r↗

s↘

k1 = ` ↑

k2 = q + `→

↓ k3 = q + `− r

k4 = p− `→

– describes ‘one loop’ scattering amplitude of four
particles with incoming particles carrying momenta p,
q and outgoing particles carrying momenta r, s

p ≡ (p0,p1, · · ·pd−1) in d dimensional space-time

p0: energy, p1, · · ·pd−1: components of momentum

In our world, d=4 6



q↘

p↗

r↗

s↘

k1 = ` ↑

k2 = q + `→

↓ k3 = q + `− r

k4 = p− `→

Expression for the amplitude in d-dimensional
space-time ∫

dd`
4∏

i=1

(k2
j + m2)−1 ×N

k2
j ≡ −(k0

j )
2 + (k1

j )
2 + · · · (kd−1

j )2 dd` ≡ d`0d`1 · · ·d`d−1

N : polynomial in components of ` and p,q, r,s that
depends on the theory
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‘g-loop contribution’ from a typical Feynman diagram
looks like ∫

dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

each `i: a d-dimensional vector labelling
loop momenta

each kj: a d-dimensional vector given by appropriate
linear combination of the `i’s and p,q · · ·

p,q · · · : the momenta carried by the incoming and
outgoing particles whose scattering amplitude we are
trying to calculate

mj: the mass of one of the particles in the theory

N : a polynomial in components of {`i} and p,q, · · · 8



Most QFT’s suffer from UV and IR divergences

– infinities that appear in the expressions for various
physical quantities – unless we are careful.∫

dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

UV divergences: divergences from the region of
integration where one or more of the `i’s become large

IR divergences: arise from the vanishing of one or
more factors of (k2

j + m2
j )
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∫
dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

1. Use (k2
j + m2

j )
−1 =

∫∞
0 dsj exp[−sj(k2

j + m2
j )]

2. Carry out integration over `j’s explicitly using rules
of gaussian integration

Result ∫ ∞
0

ds1 · · ·
∫ ∞

0
dsr F({si})

for some function F({si}).

UV divergence: one or more si → 0

IR divergence: one or more si →∞ 10



UV divergences arise from quantum fluctuations of
small wavelength modes, and are ‘bad’

– must be eliminated in order to get a sensible theory.

There is a class of QFT’s where UV divergences can
be removed by a standard procedure known as
renormalization.

– renormalizable QFT.

We use only these kinds of QFT’s for describing
theories of elementary particles.

11



IR divergences arise from quantum fluctuations of
long wavelength modes and have physical origin

– indicate that we are asking the wrong question.

e.g. they arise when we do not take into account the
effect of change of quantum ground state and/or
masses of elementary particles due to interaction.

⇒ tadpole divergences and mass renormalization
divergences.

Once we ask the right questions, these divergences
automatically disappear.

QFT’s come with an in built mechanism that tells us
how to ask the right questions and get rid of the IR
divergences. 12



An example of IR divergent diagram in a QFT with
massless fields

The blue line gives 1/k2 at k=0

– tadpole divergences
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In QFT, existence of tadpole divergences indicate that
the original ground state, obtained by ignoring
interactions, is not a true ground state.

There may or may not be a sensible ground state.

When a sensible ground state exists, QFT rules tell us
how to deal with the tadpole divergences.

– do not include such diagrams but add
compensating corrections to the other diagrams. 14



Another example of IR divergent diagram in a general
QFT

k

k

The blue line gives 1/(k2 + m2) at k2 + m2 = 0

– mass renormalization divergence.

Again QFT rules tell us not to include these diagrams
but modify the mass appropriately.
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Gravity and String Theory
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Gravity

General theory of relativity⇒ classical gravity.

Applying standard QFT techniques to general theory
of relativity runs into difficulties with UV divergence.

The theory is not renormalizable.
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Superstring theory resolves this problem in an
unexpected fashion.

— combines the principles of quantum mechanics
and special theory of relativity

– takes the elementary constituents of matter as one
dimensional objects – strings.

The size of the string is much smaller than the
resolution of the most powerful microscope

– strings appears as point particles in today’s
experiment.
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One of the vibrational states of the string has all the
properties of a graviton – the mediator of gravitational
force.

⇒ string theory automatically contains gravity!

However the procedure for computing scattering
amplitudes is somewhat different from that in QFT.
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Just as a particle trajectory gives a curve in
space-time, the trajectory of a string gives a surface
in space-time.

⇒ simple expression for scattering amplitudes
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g-loop scattering amplitude with n external states:∫
dm1 · · ·dm6g−6+2n Ig,n

{mi}: variables labelling different two dimensional
Riemann surfaces of genus g and the coordinates of
n marked points on the surface

genus g: number of handles of the surface

Different values of {mi}: Genus g surfaces of different
shape and/or different locations of the marked points

Integrand Ig,n: depends on the states that are being
scattered and also the variables {mi}

21



Possible divergences now come from divergences in
the integration over {mi}

– arise from singular Riemann surfaces

(a) (b)

– the Riemann surface either becomes a pair of
Riemann surfaces connected by an infinitely narrow
tube (a)

or develops an infinitely narrow handle connecting
two points on a single Riemann surface (b)

22



(a) (b)

In this limit the integration over {mi} resembles
integration over the parameters si in the QFT’s with

si ∼ 1 / radius of the narrow tube

In the singular limit, radius of the tube→ 0

si →∞

– IR divergence
23



This shows that all divergences in string theory are IR
divergence and there are no UV divergences in the
theory.

There is no need for renormalization.
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IR divergences in superstring theory are similar to
those which appear in QFT’s.

Since IR divergences in QFT’s disappear once we ask
the right questions, one might expect that the same
may be true in superstring theory.

However conventional formulation of superstring
theory does not tell us how to ask the right questions
so that we get finite answers.

Since one diagram captures all, there is no
systematic procedure to throw away some diagrams
and add compensating corrections.
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has

– no general scheme to remove certain diagrams and
add compensating terms
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Various indirect methods have been suggested for
dealing with this issue. Fischler, Susskind; · · ·

None of them lead to a fully systematic algorithm for
dealing with all IR divergences.

In most computations in string theory this issue is
avoided by working with

– ground states which are not changed by
interactions

– elementary particles whose masses are not
modified by interactions.
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Recent progress in

understanding IR

divergences in string

theory
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If we could construct a QFT whose scattering
amplitudes give us the amplitudes of superstring
theory, then we would have a systematic procedure
for removing IR divergences in string theory.

– had been attempted earlier

– successfully formulated for a cousin of superstring
theory – the bosonic string theory. Witten; Zwiebach; · · ·

For superstrings there is an apparent no go theorem.

Low energy limit of a superstring theory gives type
IIB supergravity for which we cannot write down a
Lagrangian or an action.
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Resolution

It is possible to construct a QFT that gives the correct
scattering amplitudes of string theory, but contains
an additional set of particles which are free.

These additional particles are unobservable since
they do not scatter.

30



Scattering amplitude for the interacting part is given
by a sum of Feynman diagrams as in conventional
QFT’s.

Each Feynman diagram gives integration over a part
of the space spanned by {mi}, and the sum of all
contributions gives integral over the full space.

All IR divergences come from s→∞ limit for one or
more propagators as in conventional QFT’s.

On the other hand this theory has no UV divergence
since its scattering amplitudes are the same as that
of string theory.
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With the help of this theory one can successfully
remove the IR divergences of the theory following the
usual procedure followed in a QFT

– gives a formulation of string theory free from all
divergences.
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Structure of the action

Two sets of string fields, ψ and φ

Each is an infinite component field, represented as a
vector

Action takes the form

S =

[
−1

2
(φ,Q Xφ) + (φ,Qψ) + f(ψ)

]
Q, X: commuting linear operators (matrix with
differential operators as entries)

(,): Lorentz invariant inner product

f(ψ): a functional of ψ describing interaction term. 33



S =

[
−1

2
(φ,Q Xφ) + (φ,Qψ) + f(ψ)

]
Equations of motion:

Q(ψ − Xφ) = 0

Qφ+ f′(ψ) = 0

first + X × second equation gives

Qψ + X f′(ψ) = 0

ψ: interacting fields, Xφ− ψ: free fields

Quantization of ψ gives the usual scattering
amplitudes of string theory while quantization of
Xφ− ψ produces particles which do not scatter.

34



k1 k2

k3kn · · ·

For Feynman rules, one finds that every vertex with external
momentum k1,k2, · · · includes a factor proportional to

exp

[
−C

n∑
i=1

k2
i

]

C: a positive constant

Due to this exponential suppression factor, integration over loop
momenta never has any divergence from the region of large
momentum.

– manifest UV finite theory.

All IR divergences can be treated using conventional quantum
field theory methods.
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Other applications

A UV finite QFT description of string theory allows us
to explore / prove various properties of the scattering
amplitudes.

One such example is the proof of unitarity

– conservation of probability.

With the help of the field theory of superstrings, one
can prove this property explicitly.
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There are various other desired properties of a ‘good
theory’ which superstring theory is expected to
possess but which have not been proven in the
conventional approach.

– e.g. crossing symmetry, analyticity etc.

With the help of superstring field theory this may
become possible.
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