

Spintronics: a review and outlook

2016. 5. 11

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- Ø Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- Ø Spin Torque Nano-Oscillator

Process Node

*Vdd : Supplying voltage of drain

Explosive increase of power consumption

Subsea data centers

"Natick" project Microsoft

A Taxonomy for Nano Information Processing Technologies

ITRS 2013 roadmap

Transport, manipulation, storage of Charge

First transistor

Transport, manipulation, storage of Spin

- The discovery of electrons J.J. Thomson (1897)
- The discovery of electron spin
 George E. Uhlenbeck (1925)
- Spin-dependent electron scattering Nevill Mott (1936)
- Transistor
 Bell Laboratory (1948)
- Giant magnetoresistance (GMR)
 Baibich et al (1988)

Thomson showed that cathode rays were particles with a negative electric charge and much smaller than an atom. He also thought all atoms contained them. These particles were later named electrons.

Lorentz (or ordinary) MR

Ordinary MR obeys the Kohler rule.

$$\frac{Dr}{r} = F(B/r_0)$$
$$r_0 = r(B=0)$$

Kapitza, Proc. Roy. Soc. A123, 292 (1929).

Anisotropic MR (AMR)

The electrical resistivity of ferromagnetic metals changes depending on the direction of the sensing current and the magnetisation (William Thomson, Lord Kelvin, In 1857) $\vec{E} = \left[\rho_{\parallel}(B) - \rho_{\perp}(B)\right] \left[\vec{m} \cdot \vec{J}\right] \vec{m}$

 $r = r_{\wedge} + Dr \cos^2 q$ r : the wire resistivity $Dr = r_{//} - r_{\wedge} (> 0)$

- The discovery of electrons
 J.J. Thomson (1897)
- The discovery of electron spin George E. Uhlenbeck & Samuel A. Goudsmit (1925)
- Spin-dependent electron scattering Nevill Mott (1936)
- Transistor
 Bell Laboratory (1948)
- Giant magnetoresistance (GMR)
 A. Fert Group & P. Grünberg (1988)

... it occurred to me that , since (I had learned) each quantum number corresponds to a degree of freedom of the electron, Pauli's fourth quantum number must mean that the electron had an additional degree of freedom -- in other words the electron must be rotating.

- The discovery of electrons
 J.J. Thomson (1897)
- The discovery of electron spin George E. Uhlenbeck & Samuel A. Goudsmit (1925)
- Spin-dependent electron scattering Nevill Mott (1936)
- Transistor
 Bell Laboratory (1948)
- Giant magnetoresistance (GMR)
 A. Fert Group & P. Grünberg (1988)

Different d-band N(E) for spin up and spin down electrons at E_F in ferromagnetic metals The s-d scattering rate is different for spin up and spin down electrons in ferromagnetic metals.

- The discovery of electrons
 J.J. Thomson (1897)
- The discovery of electron spin George E. Uhlenbeck & Samuel A. Goudsmit (1925)
- Spin-dependent electron scattering Nevill Mott (1936)
- Transistor
 Bell Laboratory (1948)
- Giant magnetoresistance (GMR)
 A. Fert Group & P. Grünberg (1988)

Phys. Rev. Lett. 61, 2472 (1988) Phys. Rev. B 39, 4828 (1989)

GMR in tri-layer

 $\mathbf{R}^{\mathbf{P}} = 2\mathbf{R} \mathbf{R} / (\mathbf{R} + \mathbf{R})$

 $\mathbf{R}^{\mathrm{AP}} = (\mathbf{R} + \mathbf{R})/2$

The Nobel Prize in Physics 2007

The Nobel Prize in Physics 2007 was awarded jointly to Albert Fert and Peter Grünberg *"for the discovery of Giant Magnetoresistance"*

Spintronics & Applications of Magnetism

Magnetic Data Storage

Spintronics & Applications of Magnetism

Memory 64 Mbits STT-MRAM (MRAM), **Everspin** Magnetic layer1 **Tunnel barrier** Magnetic layer2

Magnetic tunnel junction

Electrical Components

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- Ø Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- Ø Spin Torque Nano-Oscillator

MRAM

Magnetoresistive Random Access Memory

Conventional Magnetoresistive RAM (MRAM)

4 Mbits Magnetoresistive RAM (MRAM), Everspin Inc.

S. Tehrani (2003) Proc. of IEEE 91 p704

Basic MRAM operation Writing operation

MRAM into market

MRAM used as write journal for RAID Storage *Power fail recovery increasing system reliability & uptime*

Recognized Everspin for Perfect MRAM Quality 250k+ systems with no reported failures to-date

Critical Storage for Industrial Computing Boards *Robust & reliable non-volatile memory solution*

MRAM products for A350 Flight Control Computer *Critical program and data storage in extreme environment*

Non-volatile memory for Superbike Engine Control *Reliable power fail safe memory for automotive temperature*

Source: Everspin Inc.

STT-MRAM

(Spin-Transfer-Torque Magnetoresistive Random Access Memory)

Magnetic moment vs angular momentum

"The gyromagnetic ratio"

 $\mathcal{G}_{L} = -\frac{e}{2m_{e}} = -\frac{m_{B}}{h} \longrightarrow \mathcal{G}_{s} = -\frac{2m_{B}}{h} \quad \begin{array}{c} \text{For spin angular} \\ \text{momentum, extra} \\ \text{factor of 2 required.} \end{array}$

Pufall et al. (NIST)

Larmor Equation

Magnetic field exerts torque on magnetization.

Korea Institute o Science and Technolog

Spin transfer torque

In 1996, Slonczewski and Berger independently calculated the spin torque in metallic multilayers.

Current-driven excitation of magnetic multilayers

J.C. Slonczewski *

IBM Research Division, Thomas J. Watson Research Center, Box 216, Yorktown Heights, NY 10596, USA Received 27 October 1995; revised 19 December 1995

Emission of spin waves by a magnetic multilayer traversed by a current

L. Berger Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890 (Received 31 January 1996)

Stiles et al. (NIST)

Equation of motion

By courtesy of prof. K. J. Lee (Korea Univ.)

Current-induced Switching dynamics

How much current to induce spin dynamics?

Torque μ to current density: must have high current densities to produce large torques

Pufall et al. (NIST)

Basic MRAM operation Writing operation

STT-MRAM architecture

Architecture of the spin-transfer-torque (STT) memory

MRAM vs. STT-MRAM

S. A. Wolf, IBM J. RES. & DEV. 50, 101 (2006)

MRAM into market

STT-MRAM into market

Everspin Introduces The 64Mb DDR3 ST-MRAM

STT-MRAM in Korea

Karca Institute of

Perpendicular MTJs

17 nm

20 nm

30 nm

Samsung (2011)

IBM & MagIC (2012)

Toshiba & AIST (2012)

Thermally-stable ferromagnets

Thermally-stable ferromagnets

 L1₀ structure of FePtB layer on the CoFeB/MgO layer

Appl. Phys. A 111, 389 (2013) KIST

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- Ø Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- Ø Spin Torque Nano-Oscillator

STT-MRAM

• High power consumption (Joule heating) in magnetization switching

$$I = 10 \text{ mA}$$

$$V = 0.5V$$

$$t = 5n \sec$$

$$E = 25 fJ = 6.25 \text{ '} 10^{6} k_{B}T$$

$$E_{h} = 60 \sim 80 k_{B}T$$

- $\begin{array}{c}
 electrode \\
 \hline \\
 E \\
 \hline \\
 M \\
 \hline \\
 FM
 \end{array}$
- Electric Field Control of Magnetization
 - Reduced power consumption
 - Compatibility of electric field effect devices with semiconductor integrated circuits

Enhanced E-field control of magnetism

 Enhanced electric-field control of magnetism by interface engineering

J. Phys. D 48, 225002 (2015)

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- **Ø** Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- Ø Spin Torque Nano-Oscillator

Anomalous and Spin Hall effect (AHE)

Ø Magnetoresistance (MR) and Hall effects

$$V_{\rm NHE} = \frac{R_0 I}{d} H_z \qquad \qquad V_{\rm AHE} = \frac{R_s I}{d} M_z$$

(SOT)-MRAM

emerging

Mott device (Magnetoresistance)

,

,

à Dirac device (S-O coupling)

	STT- MRAM	SOT- MRAM
TMR	TM	J
RA	TM	J
Write current (I _{sw})	TM	TM
Speed		J
Stability (D)	TM	TM
Decoupling I _{sw} & D	Ð	TM
Endurance	TM	J

(SOT)-MRAM

1. E-field control of magnetic anisotropy

2. Switching of nano-magnet by spin-Hall effect/ spin-orbit torque

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- Ø Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- Ø Spin Torque Nano-Oscillator

Spin transfer torque driven by heat flow

Slonczewski (Kantonah)

Spin current driven by ultrafast demagnetization

- Generation of spin current in picoseconds
 - **§** Thermally-driven ultrafast demagnetization
 - **§** Spin accumulation in a normal metal
 - Spin transfer torque in an in-plane ferromagnet

Nature communications 5:4334 (2014)

Spin current by spatial temperature gradient

- a. Estimated electronic temperature gradient of Co/Pt layer
- b. Estimated spin accumulation at the end of Cu layer (200 nm) Black: ultrafast demagnetization Red: Spin dependent Seebeck
- c. Comparison b/w experimental data and calculation

Spin-dependent Seebeck effect

$$J_{S} = J_{-} - J_{-} = -(s_{-}S_{-} - s_{-}S_{-})\tilde{N}T$$

Thermal spin-transfer torque

§ Spin-dependent Seebeck effect in metallic spin valves
§ Thermal spin transfer torque and magnetization precession

Pt (20)/ [Co/Pt] (3.2)/ Cu (*h*)/ CoFeB (2) Pt (20)/ [Co/Ni] (3.2)/ Cu (*h*)/ CoFeB (2)

 $S_s = 6 \mu V/K$

 $S_s = -12 \,\mu V/K$

Nature physics 11, 576 (2015)

Outline

- **Ø** Spin Transfer-Torque Magnetoresistive Random Access Memory (STT – MRAM)
- Ø E-field Control of Magnetism
- Ø Spin-Orbit-Torque MRAM
- Ø Thermal Spin-Transfer Torque
- **Ø** Spin Torque Nano-Oscillator

Wireless communication

Microwave oscillator

Heterodyne transceiver

B. Razavi, IEEE Comm. Magazine (2003)

Spin torque nano oscillator

Precession of magnetization vector by spin transfer torque
 Microwave oscillation in 0.1 – 100 GHz range

Advantages & disadvantages of STNOs

	LC-VCO	STNO
Size	1 mm ²	1 µm²
Output power	0 dBm	< -30 dBm
Phase noise	-115 dBc @ 400kHz	< -3 dBc @ 400kHz
Power consumption	0.4 mA @0.82V	1~5 mA @0.5V
Tunable range	10%	10-100%
Agility	μs	ns

Chappert (CNRS, Paris Sud)

Agility of STNO

ØSTNO can be turned on in a few nanoseconds.

Krivorotov, Science 307, 228 (2005)

Modulation for Wireless Communication

Frequency modulation

Time (ns)

Karea Institute of Science and Technology

STNO-based Wireless Communication

- On-OFF shift keying modulation and noncoherent demodulation
- STNO-based wireless communication with 200-kbps data rate at a distance of 1 m between transmitter and receiver

Sci. Rep. 4, 5486; DOI:10.1038/srep05486 (2014)

STNO-based Wireless Communication

- Data Rate=Bandwidth x log₂ (SNR + 1)
- SNR=11.2dB (Noise of STNO=-96.9 dBm, Signal Power=-85.7 dBm)
- Bandwidth = 152 MHz (minimum pulse duration=3.3 nsec)
- Maximum data rate R=1.16Gbps

Sci. Rep. 4, 5486; DOI:10.1038/srep05486 (2014)