Optical imaging with the use of multiple scattering

Youngwoon Choi

School of Biomedical Engineering, Korea University

youngwoon@korea.ac.kr

Phase object

• Phase object: *transparent* under light

• How can we perceive the existence of the clear globe?

The phase of the incident light is *delayed* due to the presence of the sample.

Phase: label-free imaging contrast

Bright field

Nikon website

Phase contrast

- Frits Zernike 1934, Nobel prize for physics in 1953
- Phase visualizes transparent structures with better contrast

Not quantitative !!

Intensity vs. phase detection

A phase measurement will be efficient for visualization of transparent biological samples.

Interferometry quantifies a phase

Illumination Schemes

- Point-illumination
- Line-field
- Wide-field

Detection Methods

- Phase shifting interferometry
- Off-axis interferometry
- In-line holography

Functional imaging

- Dry mass
- Volume
- Refractive index
- Membrane fluctuations

Phase measures a thickness

Homogeneous sample

$$\Delta \varphi_T(x,y) = \frac{2\pi}{\lambda} \Delta n \, h(x,y)$$

The transmission phase is proportional to the sample thickness.

Measurement of membrane fluctuation

Y. Park et al., PNAS (2008).

RBCs from a patient of sickle cell anemia

Pros and cons of the phase imaging

Pros:

- Label-free imaging of transparent samples with higher contrast
- Quantitative measurement of physical properties of samples

M. Kim et. al, *Optics Letters* **36** 148 (2011) W. Choi et. al, *Nature Methods* **4** 717(2007)

Cons:

- Poor imaging resolution
- Noise from coherent light sources

- Dynamic speckle illumination
- Scattering lens
- Endoscopy using a thin GRIN lens

• Dynamic speckle illumination

- Scattering lens
- Endoscopy using a thin GRIN lens

Light scattering

Speckle: a consequence of multiple scattering

http://f64.org.uk/news.htm

Speckle pattern

Speckle illumination

• The image information lies on top of the speckle pattern.

Dynamic speckle illumination (DSI)

Static speckle illumination

Dynamic speckle illumination

Speckle illumination :

removes the fixed pattern noise \rightarrow improves image quality uses all the illumination NA \rightarrow resolution enhancement

Take the other two advantages!!

Off-axis digital holography

Quantitative phase microscope (QPM) with DSI

Use the similar optical configuration in both arms for delivering the same speckle pattern to the image plane.

Improvement of imaging quality

Improvement of imaging quality

3

2

1

0

Laser illumination

Microglia from a rat

Y. Choi et al., Opt. Lett., 36 2465 (2011).

Interpretation of a phase

Inhomogeneous sample

$$\Delta \varphi_T(x,y) = \frac{2\pi}{\lambda} \Delta n \, h(x,y)$$

$$\Delta \varphi_T(x, y) = \frac{2\pi}{\lambda} \int \Delta n(x, y, z) \, dz$$

"Sample thickness" is directly proportional to the measured phase.

Calculation of "sample thickness" requires the knowledge of 3-D refractive index of the sample.

Reflection phase as an alternative

Easy interpretation

Reflection phase depends *only* on sample's morphology

$$\phi_r = \frac{2\pi}{\lambda} n_m 2h$$

Higher phase sensitivity $2n_m/\Delta n \approx 90$ for eukaryotic cells

Prerequisites:

- Depth selectivity for distinguishing each surface
- **High speed** for studying fast dynamic motions

Previous approaches: using temporal gating

- Thermal light source
- *z*-sectioning : 0.93 μm
- Lateral resolution : 0.56 µm
- 7-step phase shifting
- Speed: 0.8 fps

Yamauchi et al., Opt. Express 19 5536 (2011)

- Mode-locked Ti:sapphire laser
- Single shot
- Speed: 1K fps
- *z*-sectioning : ~ 4 μ m

Yaqoob et al., Opt. Express 19 7587 (2011)

Previous approaches: using spatial coherence

70 0 2 4 6 8 10 12

Lateral Position (µm)

Redding et al., Opt. Lett. 39 4446 (2014)

Off-axis configuration (tilting the reference mirror)

°0

20

10

30 40

Axial Position (µm)

50 60

- Numerical aperture: (0.3 0.4)
- Depth selectivity: ~8 μm

Dynamic speckle reflection phase microscopy

Grating: the key idea for off-axis interferometry

Distribution of reference beam

Tilting the reference beam:

- physical rotation of wavefront
- reduction of fringe contrast

Grating:

- maximum overlap of two wavefronts
- uniform fringe contrast

Interference when no optical path difference

Reference speckle

Static interference

Sample speckle

Dynamic interference

Interference when 1 μ m-shift of the sample plane

Reference speckle

Static interference

Sample speckle

Dynamic interference

Measurement of axial response

~6 μ m without DSI ~1 μ m with DSI

RBC fluctuations measurements (@ 100 fps)

For better depth selectivity

Applications for non-biological samples

• Depth-selective measurement for UV-responsive polymer

Katayama et al., Phys. Chem. Chem. Phys. (2014)

Applications for non-biological samples

• Profilometry

• Dynamic speckle illumination

- Scattering lens
- Endoscopy using a thin GRIN lens

Light scattering in tissues

Glass fish

https://en.wikipedia.org/wiki/Parambassis_ranga

- Human tissue is opaque for visible light
- Optical microscopes can image only superficial layers of human tissues

Opaque human tissues

• Individual cells are almost transparent, but tissues are not.

Because *scattering* is ~100 times higher than *absorption*.

Light scattering causes problems

Limited imaging depth

How to control and suppress the effect of scattering?

Task: seeing through turbidity

Multiple scattering washes the image information out !

Transmission matrix

- Linear optical response \rightarrow Linear operator \rightarrow Matrix representation
- Transmission matrix: scattering characteristic in a forward direction

$$T^{-1}\vec{E}^{(out)} = \vec{E}^{(in)}$$

 \rightarrow The effect of multiple scattering can be inverted.

Turbid lens imaging (TLI)

Imaging a test object through a ZnO nanoparticle layer (25 μm thick)

Imaging a living cell through a skin tissue (0.45 mm thick)

Y. Choi *et al.*, Phys. Rev. Lett. **107**, 023902 (2011).
Y. Choi *et al.*, Opt. Lett. **36**, 4263 (2011).

ZnO layer

Benefits of a scattering lens #1

Resolution limited by the NA of an objective lens

$$\Delta = 1.22 \frac{\lambda}{n \sin \theta_{\text{max}}}$$

Scattering lens imaging:

٠

Resolution enhancement by multiple scattering

$$\Delta = 1.22 \frac{\lambda}{n \sin \theta_{T}}$$

 θ_T : range of *T*-matrix

Conventional vs. scattering lens imaging

NA = sin θ_{max} = 1.0

scattering lens with low NA objective lens

Scattering lens imaging system

Y. Choi et al., Phys. Rev. Lett. 107, 023902 (2011).

Benefits of a scattering lens #2

Photons travel along the lateral directions via *multiple scattering*.

Extended field of view of TLI

With a scattering lens, the range over which the image can be seen is extended beyond the normal field of view.

Single multimode optical fiber

• A multimode optical fiber carries power of light.

Mode dependent dispersion distorts the incident wave.

Single multimode optical fiber: just a lens

TLI can convert a multimode fiber into a flexible lens

Y. Choi et al., Opt. Lett. 38, 2253 (2013).

Removing pixilation of a fiber bundle

Y Choi et al., IEEE J. Sel. Top. Quant., 20 6800213 (2014).

Lensless microendoscopy by a single fiber (LMSF)

The thinnest endoscope in the world

ex-vivo image of villi in an intestine tissue of a rat

Y. Choi *et al.*, Phys. Rev. Lett. **109**, 203901 (2012).

(Selected as an Editor's suggestion ; highlighted in PRL (Viewpoint) and Nature Photonics)

Enhancement of light transmission

energy transmittance

after

400 % transmission enhancement with the eigenchannel

M. Kim, Y. Choi *et al.*, Nature Photon. **6**, 583 (2012).

before

Reflection matrix

Enhancement of energy delivery in reflection mode

Y. Choi et al., Phys. Rev. Lett., 111 243901 (2013).

• Dynamic speckle illumination

- Scattering lens
- Endoscopy using a thin GRIN lens

Key element: Graded index lens (GRIN) lens

GRIN lens

• Developing high-resolution endomicroscopy using a thin GRIN lens

Properties of GRIN Lenses

Advantages:

- Delivers an image like a normal lens
- Wide view available
- Compact size and easy modification

GRIN lens

Drawback:

- Image distortion
- Poor resolution

Final destination

T removes aberration for a GRIN lens

T: input-output relation of a GRIN lens

reconstruction

 T^{-1}

High resolution imaging through a GRIN lens

Achievements

- Highly sensitive phase microscope using dynamic speckle illumination
- Non-contact, wide-field and single-shot measurement
- Measurement of nuclear membrane fluctuation of a complex cell
- High-resolution image reconstruction through a scattering medium
- Enhanced light energy delivery through a scattering medium
- The thinnest endoscope using a single multimode fiber
- Development of ultra-thin endoscopy using a GRIN lens

Plans

- Improvement of reflection phase microscopy
 - Effective collection of diffused light, phase stabilization
- Development of high resolution rigid endoscopy
 - Aberration correction

Group members

Dr. Taeseok Daniel Yang Mr. Hyung- jin Kim Mr. Min Gyu Hyeon Mr. Gwanjun Park

Collaborators

At Korea University Prof. Beop-Min Kim Mr. Yong Guk Kang Prof. Wonshik Choi Dr. Sungsam Kang Mr. Changhyeong Yoon

At MIT Prof. Peter So Dr. Zahid Yaqoob Poorya Hosseini