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1. Consider a harmonic oscillator system
with the Hamiltonian operator

-1
H = 5(132 +4),
where variables ¢ and p satisfy the com-

mutation relation [§, p] = t.

(a) For = —Z5(g+ 1p), show that

H=ala+

DO | =

Also show that allowed eigenvalues of
Hare E, = (n+ 3)-(n=0,1,2,--")
[5pts]

(b) Construct nth energy eigenstate |n) in
terms of the ground state |0), @ and af.
(The states are normalized : (0]0) =
1 = (n|n)) [10pts]

(c) Get an explicit expression for the
ground state wave function v¥y(q) =
(g/0). [10pts]

(d) Obtain the expression for the transla-
tion operator DZz) which has the fol-
lowing properties. [10pts]

o DI(2)aD(2) = a+ z,
o Di(2)D(2) =1,
where z is a complex number.

(e) Construct |z) which is a normalized

eigenstate of @, i.c., a|z) = z|z). [5pts]

2. The spin operators for spin-1/2 particles
are given by

=301 0) 5=3(7 ')

Sl:??((l) —01>

in the S,-eigenstate basis.

(a) Derive the eigenvalues and the nor-
malized eigenstates for the S, opera-
tor in terms of the S,-eigenstate basis.

[10pts]
(b) Suppose that sequential Stern-
Gerlach  (SG)  experiments for

spin-1/2 particles are performed as
depicted in the figure below. The
y-axis corresponds to the direction
of the spin-1/2 particles emitted
from the source (S). The first SG
experiment is performed along the
z-axis (i.e., S; is measured), and
“spin down” is blocked (i.e., only
“spin up” is selected for the following
experiment). The other SG exper-
iment is then performed along the
z-axis. Find the expectation wvalue
of the final spin S, measurement.
[10pts]

Now suppose that a composite system of
an electron (e) and a positron (p) is in the
state

19) = /21l Dy =31 el

where | 1) and | |) are the spin-up and
spin-down eigenstates of S,, respectively.
A SG experiment is performed along the
z axis for the electron while another SG
experiment is performed along the z axis
for the positron.
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(c) What is the probability of getting
“spin up” for the electron and “spin
down” for the positron? [10pts]

(d) What is the expectation value of this
composite measurement St° ® SP?
[10pts]

up up

[SHSG (S,)

down

3. The Hamiltonian for a relativistic parti-

cle in the presence of a central potential

can be taken as H = \/m2ct + p2c2+ V()

where p? =5 7.

(a) If we wish to take into account rel-
ativistic effects perturbatively, show
that the above Hamiltonian can be re-
placed by H = Hy + H' where

2

p
Hy=—
0 o + V(T)
and )
;o (p
k= 8m3c?
up to (’)((#%)3) (10pts]

(b) If |¢) is a normalized eigenstate of
Hy with eigenvalue Ejy, show that it
is possible to express its expectation
value of H' as

(WIH|Y) = - [E5—2Eo(V)+(V?)]

1
mc?

where (V) = (¥|V|4). [10pts]

SG (S

down

(c) In the case of a hydrogen atam
(ie., V(r) = —), the unperturbed
ground state wave function is given by

A

(here, a = =)

1 s _»
wloo(ﬂ=7—;a Ze”a.

Use the result of (b) to find the first
order (relativistic) correction AE,(IIZ)I.
(Ignore the spin-orbit couplings. For
n =1, By = —3mc?a?.) [10pts]

(d) For thec n = 2 states of hydrogen
atom, wave functions are given by

yl)Zlm(T_') = RZ[(T)}/lm(ev ¢)

(m=%1,0forl=1,m=0forl=0),
where

Ryo(r) = —za™3(1 - 5=)e™ %,

1 3 _r
Rgl(’f') = ﬁa_ie_x(%_) s

What is the first order cor-
rections AE®  for (nlm) =
(200), (211), (210),(2,1,—1) states?
(For n = 2, Ey = —imc?a?) Also

explain why it is unnecessary to use
the degenerate perturbation theory
here although the unperturbed n = 2
energy states are degenerate. [10pts]

(Hint) [;°z"e "dz = nl.




1. Let us

Statistical Physics

consider N noninteracting
molecules moving freely on a one di-
mensional line of length L at temperature
T. Each molecule is composed of two
distinguishable atoms, and is governed by
the Hamiltonian
2 2

H(p1, p2, T1,22) = 1712‘f'_ml72 + %K|I1 — 57,
where z;, p;(¢ = 1,2) are the position and
the momentum of the ¢th atom in the
molecule. We assume that the molecules
are indistinguishable classical particles, N
and L are very large, and you can use
InN!'~NInN — N.

(a) Find the Helmholtz free energy
A(T, L, N) of the system. [10pts]
(b) Find the average energy U and show

that the result is in agreement with
the equipartition theorem. [10pts]

(c) Find the average distance between
two atoms in a molecule. [10pts]

(Hint) [ e t'dt = /7.

2. The ideal gas law (i.e., the ideal gas equa-

tion of state) cannot predict or explain
many of the real gas phenomena includ-
ing the gas-liquid phase transition, the
presence of critial point, and the Joule
expansion cooling. The van der Waals’
gas model remedies much of the draw-
backs. The van der Waals’ equation of
state, driven by applying the virial theo-
rem to the gas of hard spheres (with weak,
fairly short range, attractive forces), can
be written as
(p+75)(V —b) = RT

for a mole of gas. In the above equation,
p is the pressure, V' the molar volume, R
the gas constant, and T is the (absolute)
temperature of the gas.

(a) Describe as accurately as possible the
physical significance that the con-
stants a and b have for a given gas.
[7pts]

(b) Find out the second virial coefficient
By of the van der Waals’ gas in terms
of the constants a and b, where the
virial coefficients B,(n =1,2,---) are
defined by the equation

RT & 1
- N"B (=)L
p== ; n(37)

[8pts]

(c) At temperature T} lower than the crit-
ical temperature T, the gas can be
shown to exhibit a phase transition at
pressure p;(73) where the jump in mo-
lar volume occurs. Show that the en-
tropy change due to the transition is



(d)

given by

V,—b
Vi—b

AS=5,—5 = RIn( ),
where Sy, S;, Vy; and V; are the molar
entropies and molar volumes for the
gas and liquid phases, respectively.
[8pts]
Show that the Joule coefficient of
the gas, when it is freely expanding
(i.e., expansion at constant internal
energy), is given by

oT a

Ky = (W)U = _W’

where Cy is the molar heat capacity
of the gas at constant volume. [7pts]
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1. Let us consider a sphere of radius a with
a linear magnetic permeability 4, which is
placed in a uniform external magnetic field

Bex = Bg.

(a) Show that magnetic scalar potential
By (e, H = —V®,s) can be defined,
and that ®,; satisfies Laplace’s equa-
tion inside and also outside the sphere.
[8pts]

(b) Find @y everywhere. [12pts]

(c) Evaluate the magnetization M inside
the sphere. [10pt]

(d) For the magnetization found in (c),
obtain the effecitve current density in-
side and on the surface of the sphere.
[10pts]

2. We wish to understand the behavior of
electromagnetic waves across two different
media- (which are nonconducting), based
on macroscopic Maxwell equations.

(a) First give the cxpressions for the
electric and magnetic fields which
represent a monochromatic plane
wave propagating in a homogeneous
medium (characterized by dielectric
constant € and magnetic permeability
1), with brief explanation for having
such structure. [10pts]

(b) Now consider the problem involving
two media (see the figure) : the
medium I (II), filling the half space
z < 0 (half space z > 0), has ap-
propriate constants ¢ and p (¢ and
(). When the incident wave is Ejp. =
EpeiFE-wt  what are the expected
forms for the electric and magnetic
fields in the respective medium? [8pts]

Z tefracted

Pn

'
.

Z2=0
(inter{ace)

reflected

(c) What boundary conditions should the
fields satisfy at the interface and why?
[10pts]
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(d) Deduce from the boundary conditions
the well-known laws of reflectioin and
refraction (i.e., i = r’ and S0t = V¢

sinr VHe?
for the angles defined as in the figure.
) [12pts]

8. Consider a small circular loop of wire of
radius o carrying an oscillating current
I(t) = Iycoswt. The loop is located %n
the zy plane, with its center at the origin
(see the figure).

Pm&@

(a) At not-too-far position 7 such_ that
a < r < £ (c: the speed of light),
only the magnetic ficld is significant.
Find the magnetic field B(7,t) at such
a position. [10pts]

Now, at large distance such that © >
L obtain the appropriate expressions
I%r the electric and magnetic fields,
(7, t) and B(F,t). [12pts]

(c) Using the results of (b), find the ra-
diated power per unit solid angle.
[10pts]

(d) What is the total radiated power of
this current loop? [8pts]

(Hint) The vector potential due to a
static magnetic dipole m ( at the ori-

gin) is A(7) = BXT. On the other hand,
the Lorentz-gauge vector potential due to
an oscillating magnetic dipole mi(t) =
Re(rie™™*), located at the origin, is de-
scribed in the wave zone by the form (tak-
ing the real part understood) A(7,t) =
ik(f x ) e

,where i =T and k = «.
; oo ; f €
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) -\ simple pendulum of mass m and length

l is attached to a block of mass M which
is free to slide down a frictionless plane at
an angle a as shown in the figure. The
gravitational acceleration is g.

(a) Set up the Lagrangian in terms of z
and 6. [8pts]

(b) Find Lagrange’s equations of motion
for z and 6. [Tpts]

(c) The block undergoes an uniform ac-
celeration if the pendulum stays at a
certain angle 8 = 6, (without jitter-
ing). What is the value of 6y 7 [7pts]

(d) Find z(t) and 6(¢) when the pendu-
lum is under small oscillation about
the angle 6y (i.e., 0(t) = 6o+ 4(t), and
(1) is small). [8pts]

2.

Let us consider a uniform solid cylinder of
radius R and mass M. This cylinder rests
on a horizontal plane. An identical cylin-
der rests on top of it whent < 0. At ¢t =0,
the upper cylinder is given an infinites-
timal displacement so that both cylinders
roll without slipping as in the figure.

t=0

(a) Obtain the relationship between the
angles 6, 6; and 6 given in the figure.
Note that 6; (62) refer to the angle
of rotation from the vertical for the
bottom (top) cylinder. [7pts]

(b) Obtain the Lagrangian in terms of ¢
and 6,. [8pts]

(c) Obtain the Lagrange’s equations of
motion. What is the energy func-
tion? Find other constant(s) of mo-
tion. [8pts]

(d) When the cylinders remain in contact,
express 62 in terms of 6, M, R, and g.
[7pts]




