소속대학원 및 학(과)부	물리천문학부 (물리학전공)	수험번호	성 명		감독교수 확 인	(인)
	201 ⁻	7학년도	석사과정/석	사·박사통	통합과정	
			면접·구술고			
과목명	명 : 고전의	역학			2017.04.2	8. 시행
. [20 point	s] Assume that	the earth has	radius R and			
-	d rotates at ang					
a homogene	eous sphere as s	shown in below	figure.			
a) [5 points	s] When the ori	gin is placed at	the center of			
	calculate the r	moments of ine	rtia for x, y			
and z-axis.						
Some scien	tists and engine	eers have propo	sed a "space			
elevator". A	according to thei	ir proposal, long	and stretchy			
	e by carbon n					
•	orbit around the ng this cable, v	-				
0	on and the cos					
space shuttl	le. In the figure	, the cable has	length L and			
nass m, an	d reaches to the	e earth's surface				
	÷					
z,	Ψω					
→v						
×						
		L	_			
1						
		the territory of				
ά) [10	intal What in		$f_{\rm the achle?}$			
	oints] What is e density of the					
Assume the		cable is uniform	1.			
Assume the (c) [5 poin	e density of the	cable is uniform	1.			

magnetic field created by the current.)

(b) [8 points] When I > 0, show that the circular rotation is allowed for all ω . When I < 0, show that the circular rotation is allowed only for

$$I \ge -\frac{M\omega^2}{2\pi B}$$

(c) [5 points] Consider a configuration of $\omega, I < 0, B > 0$ which saturates the inequality of (b). Then, suppose that one increases *B*. Would this change destabilize the circular motion or not?

소속대학원 및 학(과)부	물리천문학부 (물리학전궁)	수험번호		성명		감독교수 확 인	(인)
후기모집 면접·구술고사 전공시험							

과목명 : 양자역학

-0

2017.04.28. 시행

3. [27 points] A rod of length d and uniform mass distribution is pivoted at its center and constrained to rotate in a plane. The rod has mass M and charge +Q and -Q fixed at either end.

(a) [6 points] Describe this system quantum mechanically and find its Hamiltonian, eigenfunctions and their eigenvalues.

(b) [12 points] If a constant weak electric field E lying in the plane of rotation is applied to this system (x direction), what are the new eigenfunctions and energies to first order in E ?

(c) [9 points] If the applied electric field is very strong, how can you approximate the situation? Under your approximation, find an approximate wave function and energy for the ground state. 소속대학원

감독교수 확 인

2017학년도 석사과정/석사·박사통합과정 후기모집 면접·구술고사 전공시험

과목명 : 열 및 통계물리

4. [13 points] Consider a container separated into two compartments (A and B) by a thin separating piston (S). Assume that initially the volumes of the two compartments are the same. Suppose that the entire system is thermally insulated from the environment.

Initially, A contains 3N molecules of a <u>monatomic</u> ideal gas at temperature T and B contains 2N molecules of the same ideal gas at temperature 2T. ($k_{\rm B}$ is the Boltzmann constant.)

(a) [3 points] If S is thermally conducting but is fixed at the initial position, what will be the temperature of A and that of B after a long enough time?

For <u>(b) and (c)</u>, assume that S is thermally conducting and is <u>freely movable (to the left and to the right)</u> from the initial position.

(b) [6 points] What will be (i) (1 pt) the temperature of B after a long enough time and (ii) (4 pts) the change in the entropy of the container (the entire system) in the meanwhile?

(c) [4 points] Suppose that we have waited for a long enough time so that the system has reached an equilibrium. Now suppose that S is suddenly removed from the system. What will be the change in the entropy of the entire system since the removal of Suntil after another long enough time has passed?

2017.04.28. 시행

소속대학원 물리천문학부 및 학(과)부 (물리학전공)	성 명		감독교수 확 인	(인)
2017학년도 석사과	정/석	··· 사·박사통	통합과정	
후기모집 면접·구	1술고	사 전공/	시험	
과목명 : 실험			2017	.04.28. 시행
5. [20 points] A tiny mirror is hanging from the rigid				
support by a thin quartz wire with a known torsional				
spring constant of k. That is, $\tau = -\kappa \theta$ where t is the				
torque required for the rotation of the quartz wire and				
θ is the angle of the mirror's torsional rotation with				
respect to the average angle $\theta = 0$.				
(a) [7 points] How can one measure the ambient				
temperature using the mirror described above? State				
which physical quantity one needs to measure and				
describe how to make such measurements. (Hint:				
Consider the equipartition theorem. The ambient temperature is above 273K.)				

- (b) [6 points] Can the above measurement be affected by the ambient pressure? Explain.
- (c) [7 points] Now consider a torsional oscillator consisting of a small container filled with the liquid ⁴He supported by a thin quartz wire instead. It is known that below a certain low temperature, liquid ⁴He starts to condense into a superfluid which can be regarded as a frictionless fluid (zero viscosity). How can one measure this normal fluid-superfluid temperature transition using such a torsional oscillator? Describe the necessary experimental set-up in as much detail as possible. (Hint: Forced oscillation, rotational inertia. A thermometer is provided.) Draw a schematic diagram if necessary.