소속대학원 수험번호 성 명 감독교수 확 인 (인)

2012학년도 석사과정/석사·박사통합과정 후기모집 면접·구술고사 전공시험

과목명: 고전역학/전자기학

2012. 05. 25 시행

1. (20 points) Let us consider a bead $(\neg \Rightarrow)$ of mass m which slides freely without any friction along a smooth wire bent in the shape of a curve $z=cr^n$ with $n\geq 1$ and c>0 in the figure. Here the wire is assumed to be rotating about its vertical axis at a constant angular velocity ω . A constant gravitational force is applied downward to the bead.

- (a) Write down the Lagrangian of this system.
- (b) Obtain the equation of motion for r.
- (c) Assuming that the bead is rotating with constant radius r=R, obtain the angular velocity ω in terms of $R,\,m,\,g,\,c,\,n$. Find a value of n which makes ω independent of R and m.

2. (30 points) Let us consider a cylindrical wire of permeability μ . Assume that this wire is infinitely long. The radius of the wire is R.

(a) Assume that this wire is a very good conductor. The charge density on the surface is σ . Obtain the electric field vector $\stackrel{\longrightarrow}{E}$ as a function of radius r from the inside (r < R) to the outside (R < r) of wire.

(b) Now let us remove all the surface charges of the wire and then let it carry a steady and uniform current I. Obtain the magnetic field vector $\stackrel{\longrightarrow}{B}$ (magnetic flux density) as a function of radius from the inside to the outside of the wire.

소속대학원 수험번호 성 명 감독교수 확 인 (인)

2012학년도 석사과정/석사·박사통합과정 후기모집 면접·구술고사 전공시험

과목명 : 양자역학/통계역학

2012. 05. 25 시행

3. (20 points) Consider a system in which atoms are located in a regular lattice and each atom has a spin 1/2 and associated intrinsic magnetic moment μ_0 >0. Assume that each atom interacts only weakly with other atoms so that all the other atoms act as a heat reservior. If the system is placed under an external magnetic field H_0 along the z-direction then the Hamiltonian is given by

$$H = -\mu_0 H_0 \sum_i \sigma_i^z$$

where σ_i^z is the z-component of the Pauli matrix at the site i. For $\mu=\pm\,\mu_0$, the corresponding magnetic energy of the atom is $\epsilon=\mp\,\mu_0H_0$.

- (a) Calculate the mean magnetic moment $\overline{\mu}$.
- (b) Draw $\overline{\mu}/\mu_0$ as a function of $\mu_0 H_0/k_B T$

where k_B is the Boltzmann constant. Discuss $\mu_0 H_0/k_B T \gg 1 \quad \text{and} \quad \mu_0 H_0/k_B T \ll 1 \quad \text{limits}.$

(c) Calculate the susceptibility per atom $\chi=\frac{\partial \overset{-}{\mu}}{\partial H_0}. \ \ {\rm Discuss} \ \ \mu_0H_0/k_BT\gg 1 \quad \ {\rm and} \ \ \mu_0H_0/k_BT\ll 1 \quad \ {\rm limits}.$

% If necessary, use the following formula: $\sinh(x) = x + \frac{x^3}{2!} + \cdots, \cosh(x) = 1 + \frac{x^2}{2!} + \cdots,$

$$\tanh(x) = x - \frac{x^3}{3} + \cdots, \quad \coth(x) = \frac{1}{x} + \frac{x}{3} + \cdots \quad \text{for } |x| \ll 1.$$

4. (30 points) Consider a two-level system with the following Hamiltonian:

$$H = \begin{pmatrix} 0 & \lambda \\ \lambda & 0 \end{pmatrix}$$

where λ is a non-zero positive number.

- (a) Find the energy eigenvalues and eigenstates.
- (b) If the system starts in $\Psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ state at t=0, what is its state $\Psi(t)$ at time t>0?
- (c) Obtain the probability to find $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ state at a time t>0. What is the period of the probability oscillation?