2014학년도 석사과정/석사-박사통합과정
 전기모집 면접•구술고사 전공시험

과목명 : 물리

2013. 10. 25 시행
1. <70 points> Consider a particle in two From now on, let's set $S_{12}=0$ for simplicity. identical one-dimensional square wells. For(c) (10 points) Obtain the ground-state wells with sufficiently large separation, let us energy and excited state energy. Assuming introduce ϕ_{1} and ϕ_{2} as the normalized $H_{12}<0$, discuss whether the ground-state ground-state wave functions of the two wave function is spatially symmetric or isolated square wells. Assume that these antisymmetric and draw schematically the wave functions are real and positive.

If the two wells are not very far from each other, ϕ_{1} and ϕ_{2} are no longer eigenstates of the system and as a good approximation, we can write the ground-state wave function as a linear combination of ϕ_{1} and ϕ_{2}, (e) (10 points) Assume that at a time $t=0$, $\Psi=c_{1} \phi_{1}+c_{2} \phi_{2}$. the particle is at state ϕ_{1}. Obtain the Define $\quad H_{11}=\left\langle\phi_{1}\right| H\left|\phi_{1}\right\rangle=\left\langle\phi_{2}\right| H\left|\phi_{2}\right\rangle \quad$ and minimum time that the particle is found 100 $H_{12}=\left\langle\phi_{1}\right| H\left|\phi_{2}\right\rangle, \quad S_{12}=\left\langle\phi_{1} \mid \phi_{2}\right\rangle$, and assume $\%$ at state ϕ_{2}. Express the answer first with that $c_{1}, c_{2}, H_{11}, H_{12}$ and S_{12} are real. symbols (using H_{11} and H_{12}), and then estimate the order of magnitude in seconds.
(a) (5 points) Express $E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$ using $c_{1}, c_{2}, H_{11}, H_{12}$ and S_{12}.
(b) (15 points) The coefficients c_{1} and c_{2} not have to be one-dimensional system.) can be estimated by minimizing the energy (f) (10 points) Design the experimental setup defined by $E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$. Prove that c_{1} and to test the energy levels of the quantum c_{2} satisfy the following relation.

$$
\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{12} & H_{11}
\end{array}\right)\binom{c_{1}}{c_{2}}=E\left(\begin{array}{cc}
1 & S_{12} \\
S_{12} & 1
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

(g) (10 points) Explain the experimental procedure for this experiment and discuss the expected data and results.

소속대학원	수험번호		성 명		감독교수 확	(인)

2014학년도 석사과정/석사박사통합과정

전기모집 면접•구술고사 전공시험

과목명 : 물리
2013. 10. 25 시행
[2]<30 points> Consider a particle of charge q and mass m, free to move in the $x-y$ plane (at $z=0$) in response to an electromagnetic wave propagating in the z direction represented as:
$\vec{E}(z, t)=E_{0} \cos (k z-w t) \hat{x}$
$\vec{B}(z, t)=\left(E_{0} / c\right) \cos (k z-w t) \hat{y}$

There exists resisting force to the motion of the charged particle in the form of $-\gamma m \vec{v}$ with a small damping constant γ.
(a) (10 points) Ignoring the magnetic force, write down the equation of motion in terms of \vec{v}.
(b) (10 points) Using the equation of motion obtained in (a), find the velocity \vec{v} of the particle as a function of time. The initial conditions are given as
$\vec{v}(t=0)=x(t=0)=y(t=0)=0$.
(c) (10 points) Calculate the resulting magnetic force on the particle using the result of (b).

