소속대학원

2014학년도 석사과정/석사·박사통합과정 전기모집 면접·구술고사 전공시험

과목명 : 물리

2013. 10. 25 시행

1. <70 points> Consider a particle in two From now on, let's set $S_{12} = 0$ for simplicity. identical one-dimensional square wells. For(c) (10 points) Obtain the ground-state wells with sufficiently large separation, let us_{energy} and excited state energy. Assuming introduce ϕ_1 and ϕ_2 as the normalized $ig|_{H_{12}}$ <0, discuss whether the ground-state ground-state wave functions of the two $|_{wave}$ function is spatially symmetric or isolated square wells. Assume that theseantisymmetric and draw schematically the wave functions are real and positive. density distribution.

Now, for (d) and (e), assume that H_{11} =-10 eV and H_{12} =-1 eV.

(d) (10 points) Imagine that using a laser, If the two wells are not very far from each we excite the particle from the ground state other, ϕ_1 and ϕ_2 are no longer eigenstates to the excited state. What is the proper of the system and as a good approximation, wavelength and corresponding color of the we can write the ground-state wave function laser for the excitation?

as a linear combination of ϕ_1 and ϕ_2 , (e) (10 points) Assume that at a time t=0, $\Psi = c_1 \phi_1 + c_2 \phi_2.$ the particle is at state $\phi_1.$ Obtain the Define $H_{11} = \langle \phi_1 | H | \phi_1 \rangle = \langle \phi_2 | H | \phi_2 \rangle$ and minimum time that the particle is found 100 $H_{12} = \langle \phi_1 | H | \phi_2 \rangle$, $S_{12} = \langle \phi_1 | \phi_2 \rangle$, and assume % at state ϕ_2 . Express the answer first with that $c_1, \ c_2, \ H_{11}, \ H_{12}$ and S_{12} are real. symbols (using H_{11} and H_{12}), and then

wells.

(a) (5 points) Express $E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ using c_1, c_2, H_{11}, H_{12} and S_{12} .

(b) (15 points) The coefficients c_1 and c_2ert not have to be one-dimensional system.) can be estimated by minimizing the energy(f) (10 points) Design the experimental setup defined by $E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$. Prove that c_1 and c_2 satisfy the following relation.

 $\begin{pmatrix} H_{11} & H_{12} \\ H_{12} & H_{13} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = E \begin{pmatrix} 1 & S_{12} \\ S_{12} & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

Now, we want to test this theoretical model for the two quantum wells which are closely located as given in this problem. (It does

estimate the order of magnitude in seconds.

(g) (10 points) Explain the experimental procedure for this experiment and discuss the expected data and results.

to test the energy levels of the quantum

(인)

소속대학원 수험번호 성 명 감독교수 확 인	(인)
2014학년도 석사과정/석사·박사통합과정	
전기모집 면접·구울고자 전공시엄 과목명 : 물리	신으
[2]<30 points> Consider a particle of	<u> </u>
charge q and mass m , free to move in	
the $x-y$ plane (at $z = 0$) in response to an	
electromagnetic wave propagating in the z	
direction represented as: →	
$\hat{B}(z,t) = (E_0/c)\cos(kz - wt)\hat{y}$	
There exists resisting force to the motion of	
the charged particle in the form of $-\gamma m \vec{v}$	
with a small damping constant γ .	
(a) (10 points) Ignoring the magnetic force,	
write down the equation of motion in terms	
of v.	
(b) (10 points) Using the equation of motion	
obtained in (a), find the velocity $ec{v}$ of the	
particle as a function of time. The initial	
conditions are given as $\vec{(t-0)} = \vec{(t-0)} = 0$	
v(t=0) = x(t=0) = y(t=0) = 0.	
(c) (10 points) Calculate the resulting	
magnetic force on the particle using the	
result of (b).	