XpZI A=
=53 AT A st

= X X]

2017 . 07. 18 A|3H

1.
distributed mass m is lying on the ground. A rod

[30 pts] A cylinder of radius R and uniformly

of length L and uniform mass M is hinged on the
ground (rotating freely around it). The rod leans
on the cylinder as shown in the Figure, forming an
angle 6 with the ground. The distance between
the hinge and the bottom of the cylinder is
x (< L). [Note that, tan(6/2) = R/x.] There
are no frictions this system, and the
gravitational acceleration is ¢g. The whole system
is initially at rest.

in

hinge

S

X

(a) [5 pts] Let us denote by /V;, NV, the normal

force on the cylinder by the ground and by the
rod, respectively. Show that /N —mg = N, cos#.
(b) [10 pts] Compute the net force £ on the

cylinder, in terms of /V, and 6. Also, compute the

torque 7 on the rod around the hinge, in terms of
N, , 0 and other constants introduced above.

(¢c) [10 pts] Show that F and 7 are related to
each other, at the initial time, by

2mR -
ML?sin?(0/2)

F

(d) [5 pts] Compute /V, at the initial time, when

0 = s using the results from (b) and (c).

3

2. [30 pts] Consider two interacting charged
particles with same mass m. The particles are
moving in the xy—plane, perpendicular to a

uniform magnetostatic field B= B> where B > 0.
Neglect radiation and gravity.

(a) [15 pts] Suppose the charges are identical (q;
a q). Find the equations of motion for
centre—of—mass (CM) and relative motions
separately. If the charges have opposite sign,
show the equations of motion do not separate into
equations for CM and relative motions.

(b) [8 pts] Express the equation of motion for
relative motion from (a) in terms of plane polar
coordination (r, 0), in the case of identical
charges. Show the szurr‘)(é—k%w) 1s constant
(w=18),

m
(c) [7 pts] If the equation is rewritten for the

effective potential V.(r), show that the motion is
always bounded in the presence of a magnetic
field.
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1. [30 pts] Consider monoenergetic beam of spin
1/2 particles of mass m and energy £ moving in x
direction. The potential energy operator is given
by

V(z)= V,—~B,S. for x > 0
V(z)=0 for x<0

where 1,>0 is a positive constant potential, 7y is
gyromagnetic ratio, 5,>0 is magnitude of external
magnetic field applied in z direction, and 5, is the

z—direction spin operator.

(a) [4 pts] Write the Hamiltonian for the particles
in the x > 0 region and sketch the potential
energy as a function of x for particles having
z—direction spins up and down, respectively.

(b) [4 pts] Suppose that the spin of particles
coming eigenstate of the
x—direction spin operator S, with eigenvalue +h/2

from —oo is in
and the energy of each particle is £> 1 >0.

Write down the general eigenstate of such an
incoming beam considering spatial and spinor parts.

(¢c) [5 pts] Write down the general solution of
transmitted and reflected beams (£> 1} >0).

(d) [6 pts] What are the boundary conditions at
x=0? Using the boundary conditions, write down
the equations that must be satisfied by the
amplitudes appearing in parts (b) and (c).

(e) [6 pts] If E= 1V, >0, what is the probability
of measuring z direction spin angular momentum -+
h/2 for the transmitted beam?

(f) [5 pts] Now, instead of the incoming beam
with the x—direction spin polarization (Ze.,
eigenstate of §,), if we start with wnpolarized
incoming beam (but still £= V,>0), what is the
the
for

z—direction spin

the

probability of measuring
angular momentum +#/2
beam?

transmitted

2. [30 pts] Consider that we have a hydrogen
atom. The orbital angular momentum of the
electron is [=1 (p—state). The total angular
momentum operator is defined as the sum of the
orbital and spin angular momentum operators:
J=L+S where L=rXp. The Pauli spin matrices
01 0—1i 10
(10)’ (’y:(i 0)’ 7 (0—1)‘
Also, it is known that the time—reversal operator
for an electron is given by T:—ioyK where K is

by o, =

are given -

the complex—conjugation operator.

(a) [8 pts] What are the possible eigenstates of

the total angular momentum operators J? and J,?
other words, determine all the possible
eigenstates of the total (orbital and spin) angular

In

momentum operators of the form |j,mj>. For

1 1 .
example, jz—,m-=+—> is one of such
27 2
eigenstates.
(b) [8 pts] Express the eigenstate
1 . .
‘jzi,mj =+§> in terms of the eigenstates of
S. and L, operators, i.e. |mg,m) states. Hints:
. 3N\ - 1
Start from =5y —+§>—‘m, =+1,m, —+5>
and apply J_ on both sides. By doing this, you

3
B states. Then, use

condition

will obtain the results for j=

the  orthonormality to obtain the

. o1
expressions for =5 states. You may also use

the relations

Ji|jamj>: \/j(j+1)_mj<mji1) ﬁ|j,mji1>
lej’mj>:mjﬁ|j7mj> without proof.

and

(¢) [5 pts] Prove that lez’oyK.

(d) [9 pts] Obtain 7.7 "' and 76,7 "' (i=w,y.2).
Note that you need to obtain 6 answers. Each

correct answer counts 1.5 pts.
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2. [30 pts] The simplest possible spherical
1. [30 pts] A uniform electric field E}):E perhaps electromagnetic wave can be written as

produced by means of a parallel plate capacitor, exists
in a dielectric having permittivity €,. With its axis
perpendicular to this field, a sufficiently long circular
cylindrical dielectric rod [extended along the z
(out—of—paper) direction] having permittivity €, and

radius a is introduced.

- ¥
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Because the rod is long and the original field is
uniform, the problem reduces down to a
two—dimensional polar coordinate problem. Let the
axis of cylinder be on the z—axis. (p,@,z) s the
cylindrical coordinate. We will look for solutions of
Laplace equation inside(¢b(p,9)) and outside((ba(p,@))

of rod subjecting to the boundary conditions

@) ¢,=¢, atp=a

8¢b 8¢a
(i) ¢,—— o ap at p=a, and
(iii) ¢, > — Eyx = — Eypcos for p> a.

(a) [7 pts] Justify boundary conditions (77) and (/7).
You may use the three boundary conditions in solving

the next problems even if you haven't solved (a).

(b) [15 pts] The general form of the potential
outside and inside the rod satisfying the boundary

conditions is given, respectively, by

¢, =— Eypcosh + Zp (G,.coskf+ D, sinkf)

and ¢, = Y, p* (4, coskf + B, sinkd).
k=1

Determine the potential and the electric field at points
outside and inside the rod, neglecting end effects.
(c) [8 pts] Sketch the electric field lines inside and

outside the rod when €, > ¢,.

sind

E(T707¢7t> =

|

cos (kr—wt) — %sin(/@r— wt) <;5

where w/k=c.

(a) [10 pts] Obtain the associated magnetic field
B using Faraday’s law.

(b) [10 pts] Calculate the Poynting vector
1
S =—FXB.
o
(¢) [10 pts] Take the time average of the
Poynting vector to get the Intensity vector

I =4{8). Discuss about the results,
r—dependence.

including the

% You may use the following formula:

~ 08 1 os 1 os
Vs =T g 00
19, 1 1 oy,
Vo= . r<r v’") rsinf o0 (S nfvy) + sinf a¢
~ 1 ) a”e}
Xy = — | —(sinfv,)— ——-
Vv rsme[a@ (sinbv,)= -2
1 6v,>_li( )}
rsind 8¢ r or "
1o 3%}
i Pl D
¥ You may also use the following vacuum

Maxwell equation if necessary:

B

o}
V-E=0, V:-B=0, = - VXE,

ot

1 9F
2 ot

V XB
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1. [60 pts] In a gas of free and independent 2 5 .
electrons in three—dimensions, the one—electron €_€0+?(kBT) g(Ep) where & is the energy

levels are specified by the wave vector k and spin
quantum number s with the energy given by

272
E(k) = ﬁ%]z . At zero temperature, the Fermi
energy Er can be defined in a way that the levels
with  E(k)< E, (E()> E,) are occupied
(unoccupied).
(a) [5 pts] At the temperature T, the energy
density e and the particle number density n can be
written as

2 2
e= Bk (ER) and n= 3 3f (B(k)
k k
1 . . .
where f(E)= P is the Fermi—Dirac
distribution function with the Boltzmann constant
kp and the chemical potential wx Using the
definition of the density of states
g(E):lVZ(S(EfE(k)) show that ¢ and n can be
k

written as

= /f’ dFg(E)Ef(E) and n— /jo Ay (E)f(E).

(b) [10 pts] Compute g(E) explicitly and show
om 2mE 3 n  E )
9B = e 2 E By

(c) [10 pts] In metals, when the temperature 7
1s much smaller than the chemical potential u, one
can perform the above energy integral by using
the Sommerfeld expansion, which leads to

2

L(kBT)Q [,ug

14

€= dEg (E)E+

/ dEg(E

Assuming that the chemical potential u« differs
from its 7=0 value Er by terms of order 7% one

/ dEh(E
0

where A(E) is an arbitrary function. Applying this
29,(EF)

Q(EF)

()4 g(w)]+ o1

(kBT> "(w)+ o(1).

n
can write / dEL(E +(p— Ep)h(Ey)
0

2
I (kyT) and

formula show that pu= E,— 6

density in the ground state.

(d) [5 pts] Show that the specific heat of the
kT

free electron gas is ¢, = s ( Z n
Ep

(e) [10 pts] To compute the heat capacity C=yT7T,
the specific heat should be multiplied by the
volume of the system. Suppose that a mole of
free electron metal contains ZN4 conduction
electrons (Z is the valence and N4 is Avogadro’s
number). Calculate vy wusing R=kzN,=8.314
joules/(mole K)=1.99 calories/(mole K) and
Ewkp=10000 K and Z=3 Compute v in units of
J/(mol K) and round up to two significant figures.

(f) [5 pts] In the presence of external magnetic
field H, suppose that the energy of an electron
with the momentum k whose spin is parallel
(antiparallel) to H is given by FE. (k)= E(k)— ugzH
[E_(k)= E(k)+ pgH]. What the relevant
g—factor?

is

(g) [5 pt] Since the magnetic field induces just a
constant shift of single particle energies, one can
define the density of states for electrons with the
spin parallel (antiparallel) to H as

g, (B)= %Q(E—MBH)(97 (B)=

the particle density of each species is given by
ne = [dzg, (& When

%g(E-i—,uBH)), and

satisfying n=n, +n_.

the Zeeman energy 1s much smaller than the

Fermi energy, one can assume that
1 1 , .

9+ (B) = 5g(Ex ppH) = 5g(E)+ S ppHg' (E).  Using

this approximation, find the chemical potential of
the system. (Note the the chemical potential is u
when H=0.)

(h)
by M==pp(n, —

[10 pts] The magnetization density is given
n_). Here one can again assume

9 (B) = (B2 jup) = 59(B) £ 5 sy (E)

Show that the zero temperature magnetic

susceptibility is x = A—;: g (Ep).
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